Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Forming Limit Evaluation for AA5182 Aluminum Alloy at Warm Temperatures Based on M–K Model

  • 27 Accesses


The M–K method is used to predict the forming limit of AA5182 aluminum alloy to study the effect of temperature, strain rate sensitivity index and strain hardening exponent. Three kinds of yield criterion Yld2000, Barlat’s 1989 and Hill’s 1948 are introduced into the model, respectively, to find which one is most suitable for predicting the forming limit of AA5182 at different temperatures. The forming limit experiment of AA5182 aluminum alloy under different temperatures is carried out to verify the accuracy of the prediction. As results show that both Barlat’s 1989 and Yld2000 can get the ideal prediction results for the forming limit of AA5182. However, since Barlat’s 1989 can be implemented with fewer parameters, it is considered to be more convenient and suitable for predicting forming limit of AA5182 than the other two yield criteria. Then, influence of parameters in the flow stress model is analyzed. It indicates that strain rate sensitivity index has great influence on the material forming limit and the effect of strain hardening exponent is negligible.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    S. Toros, F. Ozturk, and I. Kacar, Review of Warm Forming of Aluminum–Magnesium Alloys, J. Mater. Process. Technol., 2008, 207(1), p 1–12

  2. 2.

    P.A. Tebbe and G.T. Kridli, Warm Forming of Aluminium Alloys: An Overview and Future Directions, Int. J. Mater. Prod. Technol., 2004, 21(1–3), p 24–40

  3. 3.

    M.A. Ahmetoglu, G. Kinzel, and T. Altan, Forming of Aluminum Alloys—Application of Computer Simulations and Blank Holding Force Control, J. Mater. Process. Technol., 1997, 71(1), p 147–151

  4. 4.

    R.C. Picu, G. Vincze, F. Ozturk et al., Strain Rate Sensitivity of the Commercial Aluminum Alloy AA5182-O, Mater. Sci. Eng., A, 1996, 390(1), p 334–343

  5. 5.

    M. Jinta, Y. Sakai, M. Oyagi et al., Press Forming Analysis of Aluminum Auto Body Panel: Wrinkle Behavior in 5000 and 6000 Series Aluminum Alloy Sheet Forming, JSAE Rev., 2000, 21(3), p 407–409

  6. 6.

    A.H.V.D. Boogaard, P.J. Bolt, and R.J. Werkhoven, Modeling of AlMg Sheet Forming at Elevated Temperatures, Int. J. Form. Process., 2001, 4(3–4), p 361–375

  7. 7.

    C. Peng, Z.Q. Lin, G.L. Chen et al., Parametric Analysis of Warm Forming of Aluminum Blanks with FEA and DOE, J. Nonferrous Metals, 2006, 16(2), p 267–273

  8. 8.

    A.H.V.D. Boogaard and J. Huétink, Modelling of Aluminium Sheet Forming at Elevated Temperatures, Langmuir, 2004, 712(1), p 893–898

  9. 9.

    T. Naka, G. Torikai, R. Hino et al., The Effects of Temperature and Forming Speed on the Forming Limit Diagram for Type 5083 Aluminum–Magnesium Alloy Sheet, J. Mater. Process. Technol., 2001, 113(1), p 648–653

  10. 10.

    J. Chen, X. Zhou, and J. Chen, Sheet Metal Forming Limit Prediction Based on Plastic Deformation Energy, J. Mater. Process. Technol., 2010, 210(2), p 315–322

  11. 11.

    B.L. Ma, M. Wan, Z.Y. Cai et al., Investigation on the Forming Limits of 5754-O Aluminium Alloy Sheet with the Numerical Marciniak-Kuczynski Approach, Int. J. Mech. Sci., 2018, 142, p 420–431

  12. 12.

    G. Fang, Q.J. Liu, L.P. Lei et al., Comparative Analysis Between Stress- and Strain-Based Forming Limit Diagrams for Aluminum Alloy Sheet 1060, Trans. Nonferrous Metals Soc. China, 2012, 22(Suppl 2), p s343–s349

  13. 13.

    F. Zhang, J. Chen, J. Chen et al., Effect of Through-Thickness Normal Stress on Forming Limits Under Yld 2003 Yield Criterion and M-K Model, Int. J. Mech. Sci., 2014, 89, p 92–100

  14. 14.

    J. Chen, X. Zheng, and Y. Liu, Theoretical Prediction of High Strength Steel 22MnB5 Forming Limit in High Temperature Based on M-K Model, Proc. Eng., 2017, 207, p 550–555

  15. 15.

    W. Yuan, M. Wan, and X. Wu, Prediction of Forming Limit Curves for 2021 Aluminum Alloy, Proc. Eng., 2017, 207, p 544–549

  16. 16.

    J. Lin, M. Mohamed, D. Balint et al., The Development of Continuum Damage Mechanics-Based Theories for Predicting Forming Limit Diagrams For Hot Stamping Applications, Int. J. Damage Mech., 2014, 23(23), p 684–701

  17. 17.

    F. Barlat, J.C. Brem, J.W. Yoon et al., Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory, Int. J. Plast., 2003, 19(9), p 1297–1319

  18. 18.

    F. Barlat and K. Lian, Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets Under Plane Stress Conditions, Int. J. Plast., 1989, 5(1), p 51–66

  19. 19.

    R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R Soc. Lond., 1948, 193(Series A), p 281–297

  20. 20.

    D.S. Fields and W.A. Backofen, Determination of Strain Hardening Characteristics by Torsion Testing, Proc. Am. Soc. Test. Mater., 1957, 57, p 1259–1272

  21. 21.

    N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermo-mechanical Finite Element Models, Int. J. Plast., 2007, 23(5), p 841–875

Download references

Author information

Correspondence to Jieshi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Gong, P. & Yang, L. Forming Limit Evaluation for AA5182 Aluminum Alloy at Warm Temperatures Based on M–K Model. J. of Materi Eng and Perform (2020). https://doi.org/10.1007/s11665-020-04644-w

Download citation


  • AA5182
  • forming limit
  • M–K model
  • yield criterion