Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of Annealing on Mechanical and Corrosion Properties of As-Extruded NQZ310K Alloy

  • 16 Accesses

Abstract

The as-extruded NQZ310K (Mg-3.0Nd-1.0Ag-0.2Zn-0.4Zr, mass fraction) alloy was annealed at 300, 350, 400, 450, and 500 °C, respectively. Microstructures of the alloy were observed by an optical microscope and a scanning electron microscope equipped with an energy-dispersive X-ray spectroscope. Ambient mechanical properties were evaluated by tensile tests and nanoindentation tests, and corrosion behavior in simulated body fluid was measured by immersion test. The results show that both matrix grains and precipitates grow up with increasing annealing temperature, and the amount of the precipitates is reduced. The yield strength of the alloy under the as-extruded condition and annealed at 300 and 350 °C is 297, 313, and 298 MPa, and the ultimate tensile strength of it is 327 , 328 , and 315 MPa, respectively, indicating high yield ratio. After annealing at 400, 450, and 500 °C, the yield strength reduces faster than the ultimate tensile strength, resulting in the yield ratio decrease from 0.95 to 0.61, and the elongation improves significantly from 12.3 to 25.5%. The alloy annealed at 350 °C presents the lowest corrosion rate, and then the corrosion resistance of the alloy decreases with increasing annealing temperature. The effects of annealing on microstructure, mechanical and corrosion properties of the as-extruded NQZ310K alloy were also compared with the properties of solution treated alloy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R, 2014, 77, p 1–34

  2. 2.

    K. Kumar, R.S. Gill, and U. Batra, Challenges and Opportunities for Biodegradable Magnesium Alloy Implants, Mater. Technol., 2018, 33, p 153–172

  3. 3.

    M. Haude, H. Ince, A. Abizaid, R. Toelg, P.A. Lemos, C.V. Birgelen, E.H. Christiansen, W. Wijns, F.J. Neumann, C. Kaiser, E. Eeckhout, S.T. Lim, J. Escaned, H.M. Garcia-Garcia, and R. Waksman, Safety and Performance of the Second-Generation Drug-Eluting Absorbable Metal Scaffold in Patients with De-novo Coronary Artery Lesions (BIOSOLVE-II): 6 month Results of a Prospective, Multicentre, Non-randomised, First-In-Man Trial, Lancet, 2016, 387, p 31–39

  4. 4.

    H.M. Garcia-Garcia, M. Haude, K. Kuku, A. Hideo-Kajita, H. Ince, A. Abizaid, R. Tölg, P.A. Lemos, C.V. Birgelen, E.H. Christiansen, W. Wijns, J. Escaned, J. Dijkstra, and R. Waksman, In vivo Serial Invasive Imaging of the Second-Generation Drug-Eluting Absorbable Metal Scaffold (Magmaris—DREAMS 2G) in De novo Coronary Lesions: Insights From the BIOSOLVE-II, First-In-Man Trial, Int. J. Cardiol., 2018, 255, p 22–28

  5. 5.

    J.W. Lee, H.S. Han, K.J. Han, J. Park, H. Jeon, M.R. Ok, H.K. Seok, J.P. Ahn, K.E. Lee, D.H. Lee, S.J. Yang, S.Y. Cho, P.R. Cha, H. Kwon, T.H. Nam, J.H.L. Han, H.J. Rho, K.S. Lee, Y.C. Kim, and D. Mantovani, Long-term Clinical Study and Multiscale Analysis of in vivo Biodegradation Mechanism of Mg Alloy, Proc. Nat. Acad. Sci. USA, 2016, 113, p 716–721

  6. 6.

    G.Y. Yuan, X.B. Zhang, J.L. Niu, H.R. Tao, D.Y. Chen, Y.H. He, Y. Jiang, and W.J. Ding, Research Progress of New Type of Degradable Biomedical Magnesium Alloys JDBM, Chin. J. Nonferr. Metals, 2011, 21, p 2476–2488

  7. 7.

    X.B. Zhang, G.Y. Yuan, X.X. Fang, Z.Z. Wang, and T. Zhang, Effects of Solution Treatment on Yield Ratio and Biocorrosion Behaviour of As-Extruded Mg-2.7Nd-0.2Zn-0.4Zr Alloy for Cardiovascular Stent Application, Mater. Technol., 2013, 28, p 155–158

  8. 8.

    H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. Waizy, Biodegradable Magnesium-Based Screw Clinically Equivalent to Titanium Screw in Hallux Valgus Surgery: Short Term Results of the First Prospective, Randomized, Controlled Clinical Pilot Study, Biomed. Eng. Online, 2013, 12, p 62–72

  9. 9.

    C.Z. Zhang, S.J. Zhu, L.G. Wang, R.M. Guo, G.C. Yue, and S.K. Guan, Microstructures and Degradation Mechanism in Simulated Body Fluid of Biomedical Mg-Zn-Ca Alloy Processed by High Pressure Torsion, Mater. Des., 2016, 96, p 54–62

  10. 10.

    X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Wu, and Y.J. Xue, Effect of LPSO Structure on Mechanical Properties and Corrosion Behavior of As-Extruded GZ51K Magnesium Alloy, Mater. Lett., 2016, 163, p 250–253

  11. 11.

    C.K. Yuen and W.Y. Ip, Theoretical Risk Assessment of Magnesium Alloys as Degradable Biomedical Implants, Acta Biomater., 2010, 6, p 1808–1812

  12. 12.

    J.X. Chen, L.L. Tan, X.M. Yu, I.P. Etim, M. Ibrahim, and K. Yang, Mechanical Properties of Magnesium Alloys for Medical Application: a Review, J. Mech. Behav. Biomed. Mater., 2018, 87, p 68–79

  13. 13.

    F. Wang, H. Dong, S.J. Sun, Z. Wang, P.L. Mao, and Z. Liu, Microstructure, Tensile Properties, and Corrosion Behavior of Die-cast Mg-7Al-1Ca-xSn Alloys, J. Mater. Eng. Perform., 2018, 27, p 612–623

  14. 14.

    M.B. Zheng, G.Q. Xu, D.B. Liu, Y. Zhao, B.Q. Ning, and M.F. Chen, Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application, J. Mater. Eng. Perform., 2018, 27, p 1837–1846

  15. 15.

    D. Tie, F. Feyerabend, W.D. Mueller, R. Schade, K. Liefeith, K.U. Kainer, and R. Willumeit, Antibacterial Biodegradable Mg-Ag Alloys, Eur. Cells. Mater., 2013, 25, p 284–298

  16. 16.

    S.H. Huang, Microstructure and Mechanical Properties of a Ag Micro-Alloyed Mg-5Sn Alloy, J. Mater. Eng. Perform., 2018, 27, p 3199–3205

  17. 17.

    Y.J. Chen, Q.D. Wang, J.B. Lin, M.P. Liu, J. Hjelen, and H.J. Roven, Grain Refinement of Magnesium Alloys Processed by Severe Plastic Deformation, Trans. Nonferrous. Metal. Soc. China, 2014, 24, p 3747–3754

  18. 18.

    X.B. Zhang, J.W. Dai, Q.S. Dong, Z.X. Ba, and Y.J. Wu, Corrosion Behavior and Mechanical Degradation of As-Extruded Mg-Gd-Zn-Zr Alloys for Orthopedic Application. J. Biomed. Mater. Res., 2019. https://doi.org/10.1002/jbm.b.34424

  19. 19.

    K. Yan, H. Liu, N. Feng, J. Bai, H.H. Cheng, J.J. Liu, and F.Y. Huang, Preparation of a Single-Phase Mg-6Zn Alloy via ECAP-Stimulated Solution Treatment, J. Magnes. Alloys, 2019, 7, p 305–314

  20. 20.

    X.B. Zhang, G.Y. Yuan, and Z.Z. Wang, Effects of Extrusion Ratio on Microstructure, Mechanical and Corrosion Properties of Biodegradable Mg-Nd-Zn-Zr Alloy, Mater. Sci. Technol., 2013, 29, p 111–116

  21. 21.

    P. Maier, R. Peters, C.L. Mendis, S. Muller, and N. Hort, Influence of Precipitation Hardening in Mg-Y-Nd on Mechanical and Corrosion Properties, JOM, 2016, 68, p 1183–1190

  22. 22.

    J.X. Chen, S. Wei, L.L. Tan, and K. Yang, Effects of Solution Treatment on Mechanical Properties and Degradation of Mg-2Zn-0.5Nd-0.5Zr Alloy. Mater. Technol., 2019, 34, p 592–601

  23. 23.

    H. Liu, H. Huang, C. Wang, J. Sun, and X.B. Chen, Recent Advances in LPSO-Containing Wrought Magnesium Alloys: Relationships Between Processing, Microstructure, and Mechanical Properties, J. Min. Met. Mat. Soc., 2019, 71, p 3314–3327

  24. 24.

    X.B. Zhang, Z.Z. Ba, Z.Z. Wang, X.C. He, C. Shen, and Q. Wang, Influence of Silver Addition on Microstructure and Corrosion Behavior of Mg-Nd-Zn-Zr Alloys for Biomedical Application, Mater. Lett., 2013, 100, p 188–191

  25. 25.

    X.B. Zhang, Z.Z. Wang, G.Y. Yuan, and Y.J. Xue, Improvement of Mechanical Properties and Corrosion Resistance of Biodegradable Mg-Nd-Zn-Zr Alloys by Double Extrusion, Mater. Sci. Eng. B, 2012, 117, p 1113–1119

  26. 26.

    V. Sudarshan, Effect of Trace Additions of Cadmium, Silver and Zirconium on the Precipitation Hardening Behavior Of Aluminum 6061 Alloy, Trans. Indian Inst. Met., 2009, 62, p 209–222

  27. 27.

    X.B. Zhang, G.Y. Yuan, J.L. Niu, P.H. Fu, and W.J. Ding, Microstructure, Mechanical Properties, Biocorrosion Behavior, and Cytotoxicity of As-Extruded Mg-Nd-Zn-Zr Alloy with Different Extrusion Ratios, J. Mech. Behav. Biomed. Mater., 2012, 9, p 153–162

  28. 28.

    G. Gaurav, R. Sarvesha, S.S. Singh, R. Prasad, and J. Jain, Study of Static Recrystallization Behavior of a Mg–6Al–3Sn Alloy, J. Mater. Eng. Perform., 2019, 5, p 1–10

  29. 29.

    L.X. Zhang, W.C. Zhang, W.Z. Chen, J.P. Duan, W.K. Wang, and E. Wang, The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26, p 6013–6021

  30. 30.

    S.J. Wang, Z. Han, Y.J. Nie, X. Li, J.L. Cheng, and X.B. Zhang, Modified Mechanical Properties of Mg-Nd-Zn-Ag-Zr Alloy by Solution Treatment for Cardiovascular Stent Application, Mater. Res. Express, 2019, 6, p 085416

  31. 31.

    P. Hidalgo-Manrique, S.B. Yi, J. Bohlen, D. Letzig, and M.T. Perez-Prado, Control of the Mechanical Asymmetry in an Extruded MN11 Alloy by Static Annealing, Metall. Mater. Trans. A, 2014, 45, p 3282–3291

  32. 32.

    J.F. Zhu, Z. Zhu, Y.J. Nie, and X.B. Zhang, Effect of Solid Solution Treatment on Mechanical and Corrosion Properties of NQZ310K Bio-Magnesium Alloys, Trans. Mater. Heat. Treat., 2019, 40, p 47–54

  33. 33.

    B.P. Zhang, L. Geng, L.J. Huang, X.X. Zhang, and C.C. Dong, Enhanced Mechanical Properties in Fine-Grained Mg-1.0Zn-0.5Ca Alloys Prepared by Extrusion at Different Temperatures, Scripta Mater., 2010, 63, p 1024–1027

  34. 34.

    X.B. Zhang, Y. Zhang, K. Chen, Z.X. Ba, Z.Z. Wang, and Q. Wang, Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Sr-Zr Alloy as a Biodegradable Material, Mater. Sci. Technol., 2015, 31, p 866–873

  35. 35.

    M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, and L. Wagner, The Relation Between Microstructure and Corrosion Behaviour of AZ80 Mg Alloy Following Different Extrusion Temperatures, Corros. Sci., 2008, 50, p 1766–1778

  36. 36.

    X.B. Zhang, J.W. Dai, R.F. Zhang, Z.X. Ba, and N. Birbilis, Corrosion Behavior of Mg-3Gd-1Zn-0.4Zr Alloy With and Without Stacking Faults, J. Magnes. Alloys, 2019, 7, p 240–248

  37. 37.

    Y. Dai, X.H. Chen, T. Yan, A.T. Tang, D. Zhao, Z. Luo, C.Q. Liu, R.J. Cheng, and F.S. Pan, Improved Corrosion Resistance in AZ61 Magnesium Alloys Induced by Impurity Reduction. Acta. Metall. Sin. (Eng. Lett.), 2019. https://doi.org/10.1007/s40195-019-00914-2

  38. 38.

    H.Y. Chi, Z.G. Yuan, Y. Wang, M. Zuo, D.G. Zhao, and H.R. Geng, Glass-Forming Ability, Microhardness, Corrosion Resistance, and Dealloying Treatment of Mg60−xCu40Ndx Alloy Ribbons, Int. J. Miner. Metall. Mater., 2017, 24, p 708–717

  39. 39.

    J.W. Dai, X.B. Zhang, Y. Fei, Z.Z. Wang, and H.M. Sui, Effect of Solution Treatment on Microstructure and Corrosion Properties of Mg-4Gd-1Y-1Zn-0.5Ca-1Zr Alloy, Acta Metall. Sin. (Eng. Lett.), 2018, 31, p 865–872

  40. 40.

    J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu, and F.H. Wang, Significantly Improved Corrosion Resistance of Mg-15Gd-2Zn-0.39Zr Alloys: Effect of Heat-Treatment, J. Mater. Sci. Technol., 2019, 35, p 1644–1654

  41. 41.

    K. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: a Review, Corrosion, 2010, 66, p 075005–075013

  42. 42.

    X.B. Zhang, Y.J. Xue, and Z.Z. Wang, Effect of Heat Treatment on Microstructure, Mechanical Properties and in vitro Degradation Behavior of As-Extruded Mg-2.7Nd-0.2Zn-0.4Zr Alloy, Trans. Nonferr. Met. Soc. China, 2012, 22, p 2343–2350

Download references

Acknowledgments

This project was supported by the Natural Science Foundation of Jiangsu Province for Outstanding Youth (BK20160081, BK20180106), the Natural Science Foundation of Jiangsu Province (BK20181020), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province—Key Project (18KJA430008), the “333 Project” of Jiangsu Province (BRA2018338), and the Innovative Foundation Project for Students of Jiangsu Province (201811276021Z).

Author information

Correspondence to Xiaobo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zhu, J., Nie, Y. et al. Effects of Annealing on Mechanical and Corrosion Properties of As-Extruded NQZ310K Alloy. J. of Materi Eng and Perform (2020). https://doi.org/10.1007/s11665-020-04643-x

Download citation

Keywords

  • annealing
  • corrosion
  • magnesium alloy
  • yield ratio