Advertisement

Recovery Stress and Storage Modulus of Microwave-Induced Graphene-Reinforced Thermoresponsive Shape Memory Polyurethane Nanocomposites

  • Ritesh Kumar GuptaEmail author
  • S. A. R. Hashmi
  • Sarika Verma
  • Ajay Naik
  • Prasanth Nair
Article
  • 40 Downloads

Abstract

A special class of smart material was developed using shape memory polyurethane (SMPU) elastomer and graphene nanoplatelets (GNPs) via melt-blending process using micro-compounder. The shape recovery of the developed composites was studied under microwave irradiation. The nanocomposites were developed having 0.2, 0.4, 0.6, and 0.8 phr GNPs in the SMPU matrix. The effects of GNP reinforcement on morphology, shape memory effects, and viscoelastic properties of the composites were investigated. The recovery stress of virgin SMPU increased with reinforcement and maximized on the incorporation of 0.6 phr GNPs. The deformation-induced shape memory creation process influenced significantly the recovery stress of composites as compared to virgin SMPU. The recovery stresses of SMPU at 50, 75, and 100% strain were 1.5, 1.7, and 1.9 MPa, whereas the values of GNP-SMPU composites were 3.2, 3.4, and 4.1 MPa corresponding to 0.6 phr GNP reinforcement. The value of storage modulus above the glass transition temperature of SMPU increased from 9.2 to 15.1 MPa on the addition of 0.6 phr GNPs. The peak of the damping factor, tan δ shifted toward higher temperatures with the increased GNP content. The morphological study confirms the uniform dispersion of GNPs in the SMPU matrix. The microwave-induced heating of 0.8 phr GNP composite shows 80% shape recovery in 60 s, which is faster than convectional heating.

Keywords

dynamic mechanical analysis (DMA) graphene nanoplatelets (GNPs) recovery stress shape memory thermoplastic polyurethane (SMPU) storage modulus 

Notes

Acknowledgments

One of the authors (RKG) is highly thankful to CSIR for granting fellowship under which the present work was carried out. The authors are also very thankful to Dr. A. K. Srivastava for his constant encouragement to publish research work.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    S.A.R. Hashmi, H.C. Prasad, R. Abishera, H.N. Bhargaw, and A. Naik, Improved Recovery Stress in Multi-walled-Carbon-Nanotubes Reinforced Polyurethane, Mater. Des., 2015, 67, p 492.  https://doi.org/10.1016/j.matdes.2014.10.062 CrossRefGoogle Scholar
  2. 2.
    W.M. Huang, Z. Ding, C.C. Wang, J. Wei, Y. Zhao, and H. Purnawali, Shape Memory Materials, Mater. Today, 2010, 13, p 54.  https://doi.org/10.1016/S1369-7021(10)70128-0 CrossRefGoogle Scholar
  3. 3.
    Q. Meng and J. Hu, A Review of Shape Memory Polymer Composites and Blends, Compos. A Appl. Sci. Manuf., 2009, 40, p 1661–1672CrossRefGoogle Scholar
  4. 4.
    Y. Wu, J. Hu, C. Zhang, J. Han, Y. Wang, and B. Kumar, A Facile Approach to Fabricate a UV/Heat Dual-Responsive Triple Shape Memory Polymer, J. Mater. Chem. A, 2015, 3, p 97.  https://doi.org/10.1039/c4ta04881d CrossRefGoogle Scholar
  5. 5.
    E. Pieczyska, M. Staszczak, M. Maj, H. Tobushi, S. Hayashi, Investigation of Thermal Effects Accompanying Tensile Deformation of Shape Memory Polymer PU-SMP, Meas. Autom. Monit., 2015, 61, p 203–205Google Scholar
  6. 6.
    T. Hisaaki, H. Hisashi, Y. Etsuko, and H. Shunichi, Thermomechanical Properties in a Thin Film of Shape Memory Polymer of Polyurethane Series, Smart Mater. Struct., 1996, 5, p 483CrossRefGoogle Scholar
  7. 7.
    M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, 3D Printing of Shape Memory Polymers for Flexible Electronic Devices, Adv. Mater., 2016, 28, p 4449.  https://doi.org/10.1002/adma.201503132 CrossRefGoogle Scholar
  8. 8.
    W. Wang, D. Liu, Y. Liu, J. Leng, and D. Bhattacharyya, Electrical Actuation Properties of Reduced Graphene Oxide Paper/Epoxy-Based Shape Memory Composites, Compos. Sci. Technol., 2015, 106, p 20CrossRefGoogle Scholar
  9. 9.
    X. Liu, H. Li, Q. Zeng et al., Electro-Active Shape Memory Composites Enhanced by Flexible Carbon Nanotube/Graphene Aerogels, J. Mater. Chem. A, 2015, 3, p 11641CrossRefGoogle Scholar
  10. 10.
    T. Liu, R. Huang, X. Qi, P. Dong, and Q. Fu, Facile Preparation of Rapidly Electro-Active Shape Memory Thermoplastic Polyurethane/Polylactide Blends Via Phase Morphology Control and Incorporation of Conductive Fillers, Polymer, 2017, 114, p 28CrossRefGoogle Scholar
  11. 11.
    F.-P. Du, E.-Z. Ye, and W. Yang et al., Electroactive Shape Memory Polymer Based on Optimized Multi-Walled Carbon Nanotubes/Polyvinyl Alcohol Nanocomposites, Compos. Part B Eng., 2015, 68, p 170CrossRefGoogle Scholar
  12. 12.
    A.M. Schmidt, Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles, Macromol. Rapid Commun., 2006, 27, p 1168CrossRefGoogle Scholar
  13. 13.
    R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, and A. Lendlein, Initiation of Shape-Memory Effect by Inductive Heating of Magnetic Nanoparticles in Thermoplastic Polymers, Proc. Natl. Acad. Sci. USA, 2006, 103, p 3540CrossRefGoogle Scholar
  14. 14.
    B. Yang, W. Huang, C. Li, and L. Li, Effects of Moisture on the Thermomechanical Properties of a Polyurethane Shape Memory Polymer, Polymer, 2006, 47, p 1348CrossRefGoogle Scholar
  15. 15.
    S. Chen, J. Hu, C.-W. Yuen, and L. Chan, Novel Moisture-Sensitive Shape Memory Polyurethanes Containing Pyridine Moieties, Polymer, 2009, 50, p 4424CrossRefGoogle Scholar
  16. 16.
    X.J. Han, Z.Q. Dong, M.M. Fan et al., pH-Induced Shape-Memory Polymers, Macromol. Rapid Commun., 2012, 33, p 1055CrossRefGoogle Scholar
  17. 17.
    H. Chen, Y. Li, Y. Liu, T. Gong, L. Wang, and S. Zhou, Highly pH-Sensitive Polyurethane Exhibiting Shape Memory and Drug Release, Polym. Chem., 2014, 5, p 5168CrossRefGoogle Scholar
  18. 18.
    C.D. Eisenbach, Isomerization of Aromatic Azo Chromophores in Poly (Ethyl Acrylate) Networks and Photomechanical Effect, Polymer, 1980, 21, p 1175CrossRefGoogle Scholar
  19. 19.
    M.H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, Light-Driven Side-On Nematic Elastomer Actuators, Adv. Mater., 2003, 15, p 569CrossRefGoogle Scholar
  20. 20.
    H. Finkelmann, E. Nishikawa, G. Pereira, and M. Warner, A New Opto-Mechanical Effect in Solids, Phys. Rev. Lett., 2001, 87, p 015501CrossRefGoogle Scholar
  21. 21.
    Y. Fang, Y. Ni, S.-Y. Leo, C. Taylor, V. Basile, and P. Jiang, Reconfigurable Photonic Crystals Enabled by Pressure-Responsive Shape-Memory Polymers, Nat. Commun., 2015, 6, p 7416CrossRefGoogle Scholar
  22. 22.
    Y.-Y. Xiao, X.-L. Gong, Y. Kang, Z.-C. Jiang, S. Zhang, and B.-J. Li, Light-, pH-and Thermal-Responsive Hydrogels with the Triple-Shape Memory Effect, Chem. Commun., 2016, 52, p 10609CrossRefGoogle Scholar
  23. 23.
    C. Liu, H. Qin, and P. Mather, Review of Progress in Shape-Memory Polymers, J. Mater. Chem., 2007, 17, p 1543CrossRefGoogle Scholar
  24. 24.
    J. Hu, Y. Zhu, H. Huang, and J. Lu, Recent Advances in Shape-Memory Polymers: Structure, Mechanism, Functionality, Modeling and Applications. Prog. Polym. Sci., 2012, 37, p 1720CrossRefGoogle Scholar
  25. 25.
    I.A. Rousseau, Challenges of Shape Memory Polymers: A Review of the Progress Toward Overcoming SMP’s Limitations, Polym. Eng. Sci., 2008, 48, p 2075CrossRefGoogle Scholar
  26. 26.
    Y. Liu, K. Gall, M.L. Dunn, and P. McCluskey, Thermomechanics of Shape Memory Polymer Nanocomposites, Mech. Mater., 2004, 36, p 929CrossRefGoogle Scholar
  27. 27.
    K. Gall, M.L. Dunn, Y. Liu, D. Finch, M. Lake, and N.A. Munshi, Shape Memory Polymer Nanocomposites, Acta Mater., 2002, 50, p 5115CrossRefGoogle Scholar
  28. 28.
    F. Cao and S.C. Jana, Nanoclay-Tethered Shape Memory Polyurethane Nanocomposites, Polymer, 2007, 48, p 3790.  https://doi.org/10.1016/j.polymer.2007.04.027 CrossRefGoogle Scholar
  29. 29.
    C.A. Garcia Rosales, M.F. Garcia Duarte, H. Kim et al., 3D Printing of Shape Memory Polymer (SMP)/Carbon Black (CB) Nanocomposites with Electro-Responsive Toughness Enhancement, Mater. Res. Exp., 2018, 5, p 065704.  https://doi.org/10.1088/2053-1591/aacd53 CrossRefGoogle Scholar
  30. 30.
    A. Olalla, V. Sessini, E. Torres, and L. Peponi, Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, Elsevier, Amsterdam, 2016Google Scholar
  31. 31.
    S.M. Oh, K.M. Oh, T.D. Dao, H.M. H-i Lee, and B.K.Kim Jeong, The Modification of Graphene with Alcohols and Its Use in Shape Memory Polyurethane Composites, Polymer, 2013, 62, p 54.  https://doi.org/10.1002/pi.4366 CrossRefGoogle Scholar
  32. 32.
    L. Tan, L. Gan, J. Hu, Y. Zhu, and J. Han, Functional Shape Memory Composite Nanofibers with Graphene Oxide Filler, Compos. Part A: Appl. Sci. Manuf., 2015, 76, p 115.  https://doi.org/10.1016/j.compositesa.2015.04.015 CrossRefGoogle Scholar
  33. 33.
    F. Memarian, A. Fereidoon, and M. Ghorbanzadeh Ahangari, The Shape Memory, and The Mechanical and Thermal Properties of TPU/ABS/CNT: A Ternary Polymer Composite, RSC Adv., 2016, 6, p 101038.  https://doi.org/10.1039/c6ra23087c CrossRefGoogle Scholar
  34. 34.
    D.I. Arun, K.S. Santhosh Kumar, B. Satheesh Kumar, P. Chakravarthy, M. Dona, and B. Santhosh, High Glass-Transition Polyurethane-Carbon Black Electro-Active Shape Memory Nanocomposite for Aerospace Systems, Mater. Sci. Technol., 2019, 35, p 596.  https://doi.org/10.1080/02670836.2019.1575054 CrossRefGoogle Scholar
  35. 35.
    H. Lu, Y. Liu, and J. Leng, Carbon Nanopaper Enabled Shape Memory Polymer Composites for Electrical Actuation and Multifunctionalization, Macromol. Mater. Eng., 2012, 297, p 1138.  https://doi.org/10.1002/mame.201200235 CrossRefGoogle Scholar
  36. 36.
    H. Lu, Y. Liu, J. Gou, L. Jinsong, and S. Du, Synergistic Effect of Carbon Nanofiber and Carbon Nanopaper on Shape Memory Polymer Composite, Appl. Phys. Lett., 2010, 96, p 084102.  https://doi.org/10.1063/1.3323096 CrossRefGoogle Scholar
  37. 37.
    S.K. Yadav and J.W. Cho, Functionalized Graphene Nanoplatelets for Enhanced Mechanical and Thermal Properties of Polyurethane Nanocomposites, Appl. Surf. Sci., 2013, 266, p 360.  https://doi.org/10.1016/j.apsusc.2012.12.028 CrossRefGoogle Scholar
  38. 38.
    Y.C. Jung, J.H. Kim, T. Hayashi et al., Fabrication of Transparent, Tough, Conductive Shape-Memory Polyurethane Films by Incorporating a Small Amount of High-Quality Graphene, Macromol. Rapid Commun., 2012, 33, p 628CrossRefGoogle Scholar
  39. 39.
    H.J. Yoo, S.S. Mahapatra, and J.W. Cho, High-Speed Actuation and Mechanical Properties of Graphene-Incorporated Shape Memory Polyurethane Nanofibers, J. Phys. Chem. C, 2014, 118, p 10408.  https://doi.org/10.1021/jp500709m CrossRefGoogle Scholar
  40. 40.
    H. Du, Y. Yu, G. Jiang, J. Zhang, and J. Bao, Microwave-Induced Shape-Memory Effect of Chemically Crosslinked Moist Poly(vinyl alcohol) Networks, Macromol. Chem. Phys., 2011, 212, p 1460.  https://doi.org/10.1002/macp.201100149 CrossRefGoogle Scholar
  41. 41.
    K. Yu, Y. Liu, and J. Leng, Shape Memory Polymer/CNT Composites and Their Microwave Induced Shape Memory Behaviors, RSC Adv., 2014, 4, p 2961.  https://doi.org/10.1039/c3ra43258k CrossRefGoogle Scholar
  42. 42.
    F. Zhang, T. Zhou, Y. Liu, and J. Leng, Microwave Synthesis and Actuation of Shape Memory Polycaprolactone Foams with High Speed, Sci. Rep., 2015, 5, p 11152.  https://doi.org/10.1038/srep11152 CrossRefGoogle Scholar

Copyright information

© ASM International 2020

Authors and Affiliations

  • Ritesh Kumar Gupta
    • 1
    Email author
  • S. A. R. Hashmi
    • 1
    • 2
  • Sarika Verma
    • 1
    • 2
  • Ajay Naik
    • 2
  • Prasanth Nair
    • 2
  1. 1.Academy of Scientific and Innovative Research (AcSIR)AMPRI BhopalBhopalIndia
  2. 2.CSIR-Advanced Materials and Processes Research Institute, (AMPRI) BhopalBhopalIndia

Personalised recommendations