Residual Stress Field of High-Strength Steel After Shot Peening by Numerical Simulation

  • Chunmei Zhao
  • Changjun Shi
  • Qiang Wang
  • Changchun Zhao
  • Yukui Gao
  • Qingxiang YangEmail author


The high-strength steel (40CrMnsiMoVA) used in aviation industry was taken in this work. The residual stress field of the steel after shot peening was determined by x-ray stress instrument. Meanwhile, the finite element model of the shot peening was established, and the residual stress field of the steel after shot peening was numerically simulated by ANSYS software. Then, the simulated result was compared with the measured one to verify the validity of the model. Based on this model, the residual stress fields of the steel with different shot velocities and shot diameters were simulated. The results show that, with the increase in the shot velocity, maximum residual stress (σmrs), maximum residual stress depth (ξ0) and strengthen depth (ξm) are increased gradually. When the shot velocity is 280 m/s, the σmrs reaches − 696 MPa, and the ξ0 and ξm increase to 0.43 and 0.70 mm, respectively. With the increase in the shot diameter, the σmrs, ξ0 and ξm are increased gradually. When the shot diameter is 1.5 mm, the σmrs, ξ0 and ξm increase to − 800 MPa, 0.56 and 0.78 mm, respectively.


high-strength steel numerical simulation residual stress field shot peening 



The authors would like to express their gratitude for projects supported by the National Natural Science Foundation of China (No. 51771167).


  1. 1.
    A. Bierla, G. Fromentin, C. Minfray, J.M. Martin, T.L. Mogne, and N. Genet, Mechanical and Physico-Chemical Study of Sulfur Additives Effect in Milling of High Strength Steel, Wear, 2012, 286, p 116–123CrossRefGoogle Scholar
  2. 2.
    A.P. Kulkarni, G.G. Joshi, and V.G. Sargade, Performance of PVD AlTiCrN Coating During Machining of Austenitic Stainless Steel, Surf. Eng., 2013, 29, p 402–407CrossRefGoogle Scholar
  3. 3.
    M. Mosleh, K. Bradshaw, J.H. Belk, and J.C. Waldrop, Fatigue Failure of All-Steel and Steel–Silicon Nitride Rolling Ball Combinations, Wear, 2011, 271, p 2471–2476CrossRefGoogle Scholar
  4. 4.
    S.H. Chang, T.P. Tang, and F.C. Tai, Enhancement of Thermal Cracking and Mechanical Properties of H13 Tool Steel by Shot Peening Treatment, Surf. Eng., 2011, 27, p 581–586CrossRefGoogle Scholar
  5. 5.
    A. Bag, D. Delbergue, P. Bocher, M. Lévesque, and M. Brochu, Statistical Analysis of High Cycle Fatigue Life and Inclusion Size Distribution in Shot Peened 300 M Steel, Int. J. Fatigue, 2019, 118, p 126–138CrossRefGoogle Scholar
  6. 6.
    Y. Uematsu, T. Kakiuchi, K. Tokaji, K. Nishigaki, and M. Ogasawara, Effects of Shot Peening on Fatigue Behavior in High Speed Steel and Cast Iron with Spheroidal Vanadium Carbides Dispersed within Martensitic-Matrix Microstructure, Mater. Sci. Eng. A, 2013, 561, p 386–393CrossRefGoogle Scholar
  7. 7.
    C.R. González, C.F. Martinez, G.G. Rosas, J.L. Ocana, M. Morales, and J.A. Porro, Effect of Laser Shock Processing on Fatigue Crack Growth of Duplex Stainless Steel, Mater. Sci. Eng. A, 2015, 528, p 914–919CrossRefGoogle Scholar
  8. 8.
    G.I. Mylonas and G. Labeas, Numerical Modelling of Shot Peening Process and Corresponding Products: Residual Stress, Surface Roughness and Cold Work Prediction, Surf. Coat. Technol., 2011, 205, p 4480–4494CrossRefGoogle Scholar
  9. 9.
    P.L. Larsson, On the Mechanical Behavior at Sharp Indentation of Materials with Compressive Residual Stresses, Mater. Des., 2016, 32, p 1427–1434CrossRefGoogle Scholar
  10. 10.
    G. Ivetic, Three-Dimensional FEM Analysis of Laser Shock Peening of Aluminium Alloy 2024-T351 Thin Sheets, Surf. Eng., 2011, 27, p 445–453CrossRefGoogle Scholar
  11. 11.
    L. Gao, Y.F. Tan, B. Cai, L. He, G.Y. Dong, and Z.S. Yang, Numerical Simulation of Double-Sided Double Arc Welding Without Back Chipping Based on MSC, MARC Adv. Mater. Res., 2012, 538, p 1512–1517Google Scholar
  12. 12.
    H. Mahmoudi, A. Ghasemi, G.H. Farrahi, and K. Sherafatnia, A Comprehensive Experimental and Numerical Study on Redistribution of Residual Stresses by Shot Peening, Mater. Des., 2016, 90, p 478–487CrossRefGoogle Scholar
  13. 13.
    F.B. Tu, D.R. Delbergue, H.Y. Miao, T. Klotz, M. Brochu, P. Bocher, and M. Levesque, A Sequential DEM-FEM Coupling Method for Shot Peening Simulation, Surf. Coat. Technol., 2017, 319, p 200–212CrossRefGoogle Scholar
  14. 14.
    R.F. Kubler, S. Berveiller, D. Bouscaud, R. Guiheux, E. Patoor, and Q. Puydt, Shot Peening of TRIP780 Steel: Experimental Analysis and Numerical Simulation, J. Mater. Process. Technol., 2019, 270, p 182–194CrossRefGoogle Scholar
  15. 15.
    M. Marini, V. Fontanari, M. Bandini, and M. Benedetti, Surface Layer Modifications of Micro-shot-Peened Al-7075-T651: Experiments and Stochastic Numerical Simulations, Surf. Coat. Technol., 2017, 321, p 265–278CrossRefGoogle Scholar
  16. 16.
    C. Wang, L. Wang, X.G. Wang, and Y.J. Xu, Numerical Study of Grain Refinement Induced by Severe Shot Peening, Int. J. Mech. Sci., 2018, 146–147, p 280–294CrossRefGoogle Scholar
  17. 17.
    C. Gomes, O. Onipede, and M. Lovell, Investigation of Springback in High Strength Anisotropic Steels, J. Mater. Process. Technol., 2005, 159, p 91–98CrossRefGoogle Scholar
  18. 18.
    S. Faddeeva and J. Oseguera, Thermodynamic Model of Reactive Sputtering Process, Surf. Eng., 2012, 28, p 639–645CrossRefGoogle Scholar
  19. 19.
    Q.X. Yang, Y. Mei, and J. Park, Numerical Simulation on Residual Stress Distribution of Hard-Face-Welded Steel Specimens with Martensite Transformation, Mater. Sci. Eng. A, 2004, 364, p 244–248CrossRefGoogle Scholar
  20. 20.
    E.A. Flores-Johnson, O. Muránsky, C.J. Hamelin, P.J. Bendeich, and L. Edwards, Numerical Analysis of the Effect of Weld-Induced Residual Stress and Plastic Damage on the Ballistic Performance of Welded Steel Plate, Comput. Mater. Sci., 2012, 58, p 131–139CrossRefGoogle Scholar
  21. 21.
    O. Muránskya, C.J. Hamelina, M.C. Smithb, P.J. Bendeicha, and L. Edwardsa, The Effect of Plasticity Theory on Predicted Residual Stress Fields in Numerical Weld Analyses, Comput. Mater. Sci., 2012, 54, p 125–134CrossRefGoogle Scholar
  22. 22.
    K. Murugaratnam, S. Utili, and N. Petrinic, A Combined DEM–FEM Numerical Method for Shot Peening Parameter Optimisation, Adv. Eng. Softw., 2015, 79, p 13–26CrossRefGoogle Scholar
  23. 23.
    G.H. Majzoobi, R. Azizi, and N.A. Alavi, A Three-Dimensional Simulation of Shot Peening Process Using Multiple Shot Impacts, J. Mater. Process. Technol., 2005, 164, p 1226–1234CrossRefGoogle Scholar
  24. 24.
    M. Frija, T. Hassine, R. Fathallah, C. Bouraoui, and A. Dogui, Finite Element Modelling of Shot Peening Process: Prediction of the Compressive Residual Stresses, the Plastic Deformations and the Surface Integrity, Mater. Sci. Eng. A, 2006, 426, p 173–180CrossRefGoogle Scholar
  25. 25.
    T. Kim, J.H. Lee, H. Lee, and S.K. Cheong, An Area-Average Approach to Peening Residual Stress Under Multi-impacts Using a Three-Dimensional Symmetry-Cell Finite Element Model with Plastic Shots, Mater. Des., 2010, 31, p 50–59CrossRefGoogle Scholar
  26. 26.
    J.Z. Zhou, J. Li, S. Huang, J. Sheng, X.K. Meng, Q. Sun, Y.H. Sun, G.F. Xu, Y.J. Sun, and H.T. Li, Influence of Cryogenic Treatment Prior to Laser Peening on Mechanical Properties and Microstructural Characteristics of TC6 Titanium Alloy, Mater. Sci. Eng. A, 2018, 718, p 207–215CrossRefGoogle Scholar
  27. 27.
    G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31CrossRefGoogle Scholar
  28. 28.
    G.H. Majzoobi, K. Azadikhah, and J. Nemati, The Effects of Deep Rolling and Shot Peening on Fretting Fatigue Resistance of Aluminum-7075-T6, Mater. Sci. Eng. A, 2009, 516, p 235CrossRefGoogle Scholar

Copyright information

© ASM International 2020

Authors and Affiliations

  • Chunmei Zhao
    • 1
  • Changjun Shi
    • 2
  • Qiang Wang
    • 1
  • Changchun Zhao
    • 1
  • Yukui Gao
    • 3
  • Qingxiang Yang
    • 1
    Email author
  1. 1.State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory for Optimizing Metal Product Technology and Performance, College of Materials Science and EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.Continuing Education CentreHebei Construction Material Vocational and Technical CollegeQinhuangdaoChina
  3. 3.College of Aerospace and MechanicalTongji UniversityShanghaiChina

Personalised recommendations