Advertisement

Influence of Processing Conditions on Properties of AISI 316LN Steel Grade

  • Tibor KvackajEmail author
  • Alica Rozsypalova
  • Robert Kocisko
  • Jana Bidulska
  • Patrik Petrousek
  • Martin Vlado
  • Imrich Pokorny
  • Jan Sas
  • Klaus-Peter Weiss
  • Michal Duchek
  • Robert Bidulsky
  • Jan Duchon
  • Dusan Simcak
Article
  • 22 Downloads

Abstract

The influence of rolling temperatures performed at ambient and cryogenic conditions in the interval of deformations ε = <10; 50> (%) on structural development and mechanical properties of steel grade AISI 316LN was studied. The evaluations of microstructures were studied by optical and transmission electron microscopy. The initial strength properties of the material after solution annealing tested at 293 K were: RP0,2 = 325 MPa, Rm = 640 MPa, and A5 = 49%. The biggest values of strength properties were obtained by material processing at cryorolling conditions with thickness reduction of 50% and tested at 77 K as follows: RP0,2 = 1571 MPa, Rm = 1880 MPa, and A5 = 4%. From the analysis, it is resulted that the dislocation slip is the main mechanism of plastic deformation realized by rolling at ambient temperatures; at cryogenic temperatures, it is possible to observe a combination of dislocation slip accompanied with deformation twinning.

Keywords

316LN austenitic stainless steel cryorolling deformation twinning mechanical properties 

Notes

Acknowledgment

This work was supported by VEGA project 1/0599/18 and “Center of research of efficient integration of combined systems based on renewable energy sources” ITMS 26220220064, financed through European Regional Development Fund.

References

  1. 1.
    J. Sas, S. Kauffmann-Weiss, and K.-P. Weiss, Effect of Aging on Mechanical Properties of 316LN at 4.2 K for Fusion Applications, Acta Metall. Slovaca, 2018, 24, p 287–295.  https://doi.org/10.12776/ams.v24i4.1140 CrossRefGoogle Scholar
  2. 2.
    K.-P. Weiss, N. Bagrets, J. Sas, A. Jung, S.I. Schlachter, A. Della Corte, G. Celentano, and T. Kvačkaj, Mechanical and Thermal Properties of Central Former Material for High-Current Superconducting Cables, IEEE Trans. Appl. Superconduct., 2016, 26, p 7457353.  https://doi.org/10.1109/tasc.2016.2539101 CrossRefGoogle Scholar
  3. 3.
    J.R. Davis, Alloy Digest Sourcebook: Stainless Steels. ASM International, 2000, ISBN: 978-0-87170-649-2Google Scholar
  4. 4.
    ASM Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys. Volume 1, 2005, ISBN 0-87170-380-7Google Scholar
  5. 5.
    M.F. McGuire, Stainless Steels for Design Engineers. ASM International, 2008, ISBN: 0871707179Google Scholar
  6. 6.
    M.L.G. Byrnes, M. Grujicic, and W.S. Owen, Nitrogen Strengthening of a Stable Austenitic Stainless Steel, Acta Mater., 1987, 35(7), p 1853–1862CrossRefGoogle Scholar
  7. 7.
    V.S.A. Challa, X.L. Wan, M.C. Somani, L.P. Karjalainen, and R.D.K. Misra, Strain Hardening Behavior of Phase Reversion-Induced Nanograined/Ultrafine-Grained (NG/UFG) Austenitic Stainless Steel and Relationship with Grain Size and Deformation Mechanism, Mater. Sci. Eng., A, 2014, 613, p 60–70CrossRefGoogle Scholar
  8. 8.
    Y. Xiong, Y. Yuec, Y. Lu, T. He, M. Fan, F. Ren, and W. Cao, Cryorolling Impacts on Microstructure and Mechanical Properties of AISI316 LN Austenitic Stainless Steel, Mater. Sci. Eng., A, 2018, 709, p 270–276CrossRefGoogle Scholar
  9. 9.
    A. Sato, K. Soma, and T. Mori, Hardening Due to Pre-existing ε-Martensite in an Fe-30Mn-1Si alloy single crystal, Acta Mater., 1982, 30, p 1901–1907CrossRefGoogle Scholar
  10. 10.
    V. Seetharaman, Deformation and Martensite Transformation, Bull. Mater. Sci., 1984, 6, p 703–716CrossRefGoogle Scholar
  11. 11.
    J. Manjanna, S. Kobayashi, Y. Kamada, S. Takahashi, and H. Kikuchi, Martensitic Transformation in SUS 316LN Austenitic Stainless Steel at RT, J. Mater. Sci., 2008, 43, p 2659–2665CrossRefGoogle Scholar
  12. 12.
    D. Šimčák, T. Kvačkaj, R. Kočiško, R. Bidulský, J. Kepič, and V. Puchý, Evaluation of Hight Purity Aluminium After Asymmetric Rolling at Ambient and Cryogenic Temperatures, Acta Metall. Slovaca, 2017, 23, p 99–104.  https://doi.org/10.12776/ams.v23i2.928 CrossRefGoogle Scholar
  13. 13.
    D. Hradil, M. Duchek, T. Hrbáčková, and A. Ciski, Gas nitriding with Deep Cryogenic Treatment of High-Speed Steel, Acta Metall. Slovaca, 2018, 24, p 187–193.  https://doi.org/10.12776/ams.v24i2.1058 CrossRefGoogle Scholar
  14. 14.
    M. Sehri, H. Ghayour, K. Amini, M. Naseri, H. Rastegari, and V. Javaeri, Effects of Cryogenic Treatment on Microstructure and Wear Resistance of Fe-0.35C-6.3Cr Martensitic Steel, Acta Metall. Slovaca, 2018, 24, p 134–146.  https://doi.org/10.12776/ams.v24i2.1037 CrossRefGoogle Scholar
  15. 15.
    T. Kvackaj, J. Bidulska, R. Bidulsky, A. Kovačova, R. Kocisko, P. Bella, M. Luptak, and J. Bacso, Influence of Annealing Conditions on Structural Development of Cryo Rolled FeSi Steel, Acta Phys. Pol., A, 2014, 126, p 184–185.  https://doi.org/10.12693/APhysPolA.126.184 CrossRefGoogle Scholar
  16. 16.
    Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: fcc Versus bcc Metals, Mater. Sci. Eng., A, 2004, 381, p 71–79.  https://doi.org/10.1016/j.msea.2004.03.064 CrossRefGoogle Scholar
  17. 17.
    T. Kvackaj, R. Kočiško, J. Tiža, J. Bidulská, A. Kovácová, R. Bidulský, J. Bacsó, and M. Vlado, Application of Workability Test to SPD Processing, Arch. Metall. Mater., 2013, 58, p 407–412.  https://doi.org/10.2478/amm-2013-0008 CrossRefGoogle Scholar
  18. 18.
    T. Kvackaj, P. Bella, R. Bidulsky, R. Kocisko, P. Petrousek, A. Fedorikova, J. Bidulska, J. Jandacka, M. Luptak, M. Cernik, and R. Pernis, The Effect of Cryo-Rolling and Annealing on Magnetic Properties in Non-oriented Electrical Steel, Acta Phys. Pol., A, 2017, 131(4), p 1105–1107.  https://doi.org/10.12693/APhysPolA.131.1105 CrossRefGoogle Scholar
  19. 19.
    I. Ucok, T. Ando, and N.J. Grant, Property Enhancement in Type 316L Stainless Steel by Spray Forming, Mater. Sci. Eng, 1991, A133, p 284–287CrossRefGoogle Scholar
  20. 20.
    Y. Xiong, T. He, J. Wang, Y. Lu, L. Chen, F. Ren, Y. Liu, and A. Volinsky, Cryorolling Effect on Microstructure and Mechanical Properties of Fe-25Cr-20Ni Austenitic Stainless Steel, Mater. Des., 2018, 88, p 398–405.  https://doi.org/10.1016/j.matdes.2015.09.029 CrossRefGoogle Scholar
  21. 21.
    B. Roy, R. Kumar, and J. Das, Effect of Cryorolling on the Microstructure and Tensile Properties of Bulk Nano-Austenitic Stainless Steel, Mater. Sci. Eng., A, 2015, 631, p 241–247.  https://doi.org/10.1016/j.msea.2015.02.050 CrossRefGoogle Scholar
  22. 22.
    W. Wei, S.L. Wang, K.X. Wei, I.V. Alexandrov, Q.B. Du, and J. Hu, Microstructure and Tensile Properties of Cu-Al Alloys Processed by ECAP and Rolling at Cryogenic Temperature, J. Alloys Compd., 2016, 678, p 506–510.  https://doi.org/10.1016/j.jallcom.2016.04.035 CrossRefGoogle Scholar

Copyright information

© ASM International 2020

Authors and Affiliations

  • Tibor Kvackaj
    • 1
    Email author
  • Alica Rozsypalova
    • 1
  • Robert Kocisko
    • 1
  • Jana Bidulska
    • 1
  • Patrik Petrousek
    • 1
  • Martin Vlado
    • 1
  • Imrich Pokorny
    • 1
  • Jan Sas
    • 2
  • Klaus-Peter Weiss
    • 2
  • Michal Duchek
    • 3
  • Robert Bidulsky
    • 4
    • 6
  • Jan Duchon
    • 5
    • 7
  • Dusan Simcak
    • 1
  1. 1.Technical University of KosiceKosiceSlovakia
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Comtes FHT, a.sDobranyCzech Republic
  4. 4.Politecnico di TorinoTorinoItaly
  5. 5.Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
  6. 6.Agency for the Support of Regional Development Kosice, Kosice Self-Governing RegionKosiceSlovakia
  7. 7.Research Centre RezHusinec-RezCzech Republic

Personalised recommendations