Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 2, pp 1253–1262 | Cite as

Grain-Refined Microstructure and Hard Surface Layer Produced by SMRGT Process for Improved Corrosion Behavior of Mg-3Al-1Zn Alloy

  • Biqiang ChenEmail author
  • Chao Xin
  • Guifeng Zhang
  • Fan Zhou
  • Linjie Zhang
Article
  • 26 Downloads

Abstract

To improve the surface properties and performance, a grain-refined surface layer was produced on AZ31B Mg alloy by a newly developed surface nano-crystallization and hardening process called surface mechanical rolling grinding treatment (SMRGT). The grain size refinement and minimal surface hardening were confirmed by the microstructure observations, XRD results and microhardness tests and were attributed to the multipass small strain-induced plastic deformation of the material during the SMRGT process. A nano-grain surface layer (average grain size of ~ 100 nm) and a graded microhardness variation (average ~ 113 HV adjacent to surface) along the thickness direction were generated. The Ecorr values of the as-SMRGTed samples were − 1.43 ± 0.03 and − 1.42 ± 0.02 V, increasing by ~ 30-40 mV compared with the values of the as-received (AR) sample (− 1.46 ± 0.02 V), corresponding to icorr ranging from 3.0 × 10−5 to 1.0 × 10−5 and 5.0 × 10−6 A/cm2, respectively. Charge transfer resistance (Rct) increased from 93.4 to 292.4 and 578.3 Ω (~ 3-6 times) with the increasing number of SMRGT passes. The corrosion resistance improvement was attributed mainly to the dramatic strain-induced surface grain refinement and minimal surface hardening that give rise to a more smooth and densely packed surface state.

Keywords

electrochemical corrosion nanoscale surface layer surface state transmission electron microscopy (TEM) 

Notes

Acknowledgments

The Special Welding Teaching and Research section of State Key Laboratory for Mechanical Behavior of Materials of Xi’an Jiaotong University is acknowledged. The authors thank Dr. C. Xin, F. Zhou, Prof. L.J. Zhang and J. Peng for careful reading and valuable criticisms that improved this manuscript.

References

  1. 1.
    C.S. Wu, Z. Zhang, and F.H. Cao, Study on the Anodizing of AZ31 Magnesium Alloys in Alkaline Borate Solutions, Appl. Surf. Sci., 2007, 253(8), p 3893–3898CrossRefGoogle Scholar
  2. 2.
    J.E. Gray and B. Luan, Protective Coatings on Magnesium and its Alloys—A Critical Review, J. Alloy. Compd., 2002, 336(1–2), p 88–113CrossRefGoogle Scholar
  3. 3.
    H. Wang, Y. Estrin, and H. Fu, The Effect of Pre-processing and Grain Structure on the Biocorrosion and Fatigue Resistance of Magnesium Alloy AZ31, Adv. Eng. Mater., 2010, 9(11), p 967–972CrossRefGoogle Scholar
  4. 4.
    A. Loos, R. Rohde, and A. Haverich, In Vitro and in Vivo Biocompatibility Testing of Absorbable Metal Stents, Macromol. Symp., 2007, 253(1), p 103–108CrossRefGoogle Scholar
  5. 5.
    X. Gu, Y. Zheng, and Y. Cheng, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 30(4), p 484–498CrossRefGoogle Scholar
  6. 6.
    M. Liu, P.J. Uggowitzer, and P. Schmutz, Calculated Phase Diagrams, Iron Tolerance Limits, and Corrosion of Mg-Al Alloys, JOM, 2008, 60(12), p 39–44CrossRefGoogle Scholar
  7. 7.
    K.U. Kainer, P.B. Srinivasan, and C. Blawert, Corrosion of Magnesium and its Alloys, Shreirs Corrosion, 2010, 51(8), p 2011–2041CrossRefGoogle Scholar
  8. 8.
    G.L. Makar and J. Kruger, Corrosion of Magnesium, Int. Mater. Rev., 1993, 38(3), p 138–153CrossRefGoogle Scholar
  9. 9.
    M. Moravej and D. Mantovani, Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities, Int. J. Mol. Sci., 2011, 12(7), p 4250–4270CrossRefGoogle Scholar
  10. 10.
    G. Song, Control of Biodegradation of Biocompatable Magnesium Alloys, Corros. Sci., 2007, 49(4), p 1696–1701CrossRefGoogle Scholar
  11. 11.
    P.W. Serruys, P. de Jaegere, and F. Kiemeneij, A comparison of Balloon-Expandable-Stent Implantation with Balloon Angioplasty in Patients with Coronary Artery Disease, N. Engl. J. Med., 1994, 331(8), p 489–495CrossRefGoogle Scholar
  12. 12.
    S.R. Agnew and J.F. Nie, Preface to the Viewpoint Set On: The Current State of Magnesium Alloy Science and Technology, Scripta Mater., 2010, 63(7), p 671–673CrossRefGoogle Scholar
  13. 13.
    B.L. Mordike and T. Ebert, Magnesium Properties-Applications-Potential, Mater. Sci. Eng., A, 2001, 302(1), p 37–45CrossRefGoogle Scholar
  14. 14.
    K.Y. Chiu, M.H. Wong, and F.T. Cheng, Characterization and Corrosion Studies of Fluoride Conversion Coating on Degradable Mg Implants, Surf. Coat. Tech., 2007, 202(3), p 590–598CrossRefGoogle Scholar
  15. 15.
    G.L. Song and Z. Shi, Anodization and Corrosion of Magnesium (Mg) Alloys, Corros. Magnes. Alloy., 2001, 41, p 565–614Google Scholar
  16. 16.
    Y. Li, T. Zhang, and F. Wang, Effect of Microcrystallization on Corrosion Resistance of AZ91D Alloy, Electrochim. Acta, 2006, 51(14), p 2845–2850CrossRefGoogle Scholar
  17. 17.
    T. Balusamy, S. Kumar, and T.S.N.S. Narayanan, Effect of Surface Nanocrystallization on the Corrosion Behaviour of AISI, 409 Stainless Steel, Corros. Sci., 2010, 52(11), p 3826–3834CrossRefGoogle Scholar
  18. 18.
    P.S. Prevéy, J. Telesman, and T. Gabb, FOD Resistance and Fatigue Crack Arrest in Low Plasticity Burnished IN718, Proceedings of the 5th National High Cycle Fatigue Conf., Chandler, AZ. 2000, 3, p 7–9Google Scholar
  19. 19.
    A.H. Clauer, Laser Shock Peening for Fatigue Resistance, Surface Performance of Titanium, JK Gregory, PA, 1996, p 217–230Google Scholar
  20. 20.
    T. Watanabe and K. Hattori, Effect of ultrasonic shot peening on fatigue strength of high strength steel, Proceedings ICSP8, Garmisch-Partenkirchen, Germany, 2002, p 305–310Google Scholar
  21. 21.
    T. Wang, J. Yu, and B. Dong, Surface Nanocrystallization Induced by Shot Peening and its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel, Surf. Coat. Tech., 2006, 200(16–17), p 4777–4781CrossRefGoogle Scholar
  22. 22.
    C. Op”t Hoog, N. Birbilis, and Y. Estrin, Corrosion of pure Mg as a Function of Grain Size and Processing Route and Dagger, Adv. Eng. Mater., 2010, 10(6), p 579–582CrossRefGoogle Scholar
  23. 23.
    N. Birbilis, K.D. Ralston, and S. Virtanen, Grain Character Influences on Corrosion of ECAPed Pure Magnesium, Corros. Eng. Sci. Techn., 2010, 45(3), p 224–230CrossRefGoogle Scholar
  24. 24.
    D. Song, A. Ma, and J. Jiang, Corrosion Behavior of Equal-Channel-Angular-Pressed Pure Magnesium in NaCl Aqueous Solution, Corros. Sci., 2010, 52(2), p 481–490CrossRefGoogle Scholar
  25. 25.
    G. Ben-Hamu, D. Eliezer, and L. Wagner, The Relation Between Severe Plastic Deformation Microstructure and Corrosion Behavior of AZ31 Magnesium Alloy, J. Alloy. Compd., 2009, 468(1), p 222–229CrossRefGoogle Scholar
  26. 26.
    D. Song, A.B. Ma, and J.H. Jiang, Corrosion Behaviour of Bulk Ultra-Fine Grained AZ91D Magnesium Alloy Fabricated by Equal-Channel Angular Pressing, Corros. Sci., 2011, 53(1), p 362–373CrossRefGoogle Scholar
  27. 27.
    B.Q. Chen, G.F. Zhang, L.J. Zhang, and T.T. Xu, A New Approach of a Gradient Nanograined Surface Layer for Mg-3Al-1Zn Alloy Induced by SMRGT, Int. J. Adv. Manuf. Tech., 2018, 94, p 2659–2665CrossRefGoogle Scholar
  28. 28.
    W.T. Huo, W. Zhang, J.W. Lu, and Y.S. Zhang, Simultaneously Enhanced Strength and Corrosion Resistance of Mg-3Al-1Zn Alloy Sheets with Nano-Grained Surface Layer Produced by Sliding Friction Treatment, J. Alloy. Compd., 2017, 720, p 324–331CrossRefGoogle Scholar
  29. 29.
    A.M. Hassan and A.M. Maqableh, The Effects of Initial Burnishing Parameters on Non-Ferrous Components, J. Mater. Process Tech., 2000, 102(1–3), p 115–121CrossRefGoogle Scholar
  30. 30.
    M. Janeček and F. Chmelík, Mechanisms of Plastic Deformation in AZ31 Magnesium Alloy Investigated by Acoustic Emission and Electron Microscopy, Magnesium Alloys-Design, Processing and Properties. Frank Czerwinski (Ed.), ISBN: 978-953-307-520-4 InTech, 2011, p 43–68Google Scholar
  31. 31.
    G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium, Corros. Sci., 2012, 58(5), p p145–p151CrossRefGoogle Scholar
  32. 32.
    G. Song, D. StJohn, and T. Abbott, Corrosion Behaviour of a Pressure Die Cast Magnesium Alloy, J. Cast. Metal Res., 2005, 18(3), p 174–180CrossRefGoogle Scholar
  33. 33.
    G.L. Song and Z.Q. Xu, The Surface, Microstructure and Corrosion of Magnesium Alloy AZ31 Sheet, Electrochim. Acta, 2010, 55(13), p 4148–4161CrossRefGoogle Scholar
  34. 34.
    C. op’t Hoog, N. Birbilis, and M.X. Zhang, Surface Grain Size Effects on the Corrosion of Magnesium, Key Eng. Mater., 2008, 384, p 229–240CrossRefGoogle Scholar
  35. 35.
    H.S. Kim, G.H. Kim, H. Kim, and W.J. Kim, Enhanced Corrosion Resistance of High Strength Mg–3Al–1Zn Alloy Sheets with Ultrafine Grains in a Phosphate-Buffered Saline Solution, Corros. Sci., 2013, 74(3), p 139–148CrossRefGoogle Scholar
  36. 36.
    G.L. Makar and K. Kruger, Corrosion Studies of Rapidly Solidified Magnesium Alloys, J. Electrochem. Soc., 1990, 137(2), p 414–421CrossRefGoogle Scholar
  37. 37.
    G. Song, A. Atrens, and D. StJohn, The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions, Corros. Sci., 1997, 39(10–11), p 1981–2004CrossRefGoogle Scholar
  38. 38.
    N. Pebre, T. Picaud, and M. Durprat, Evaluation of Corrosion Performance of Coated Steel by the Impedance Technique, Corros. Sci., 1989, 29(9), p 1073–1086CrossRefGoogle Scholar
  39. 39.
    G. Ruhi, O.P. Modi, and I.B. Singh, Corrosion Behaviour of Nano Structured Sol-Gel Alumina Coated 9Cr-1Mo Ferritic Steel in Chloride Bearing Environments, Surf. Coat. Tech., 2009, 204(3), p 359–365CrossRefGoogle Scholar
  40. 40.
    L. Tomcsanyi, K. Tomcsanyi, and I. Varga, Electrochemical Study of the Pitting Corrosion of Aluminium and its Alloys—II, Study of the Interaction of Chloride Ions with a Passive Film on Aluminium and Initiation of Pitting Corrosion, Electrochim. Acta, 1989, 34(6), p 855–859CrossRefGoogle Scholar
  41. 41.
    L. Lu, T. Liu, J. Chen, and Z. Wang, Microstructure and Corrosion Behavior of AZ31 Alloys Prepared by Dual Directional Extrusion, Mater. Des., 2012, 36, p 687–693CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Biqiang Chen
    • 1
    Email author
  • Chao Xin
    • 1
  • Guifeng Zhang
    • 1
  • Fan Zhou
    • 1
  • Linjie Zhang
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations