Advertisement

Influence of Effective Physical Contact Area on Microstructure and Mechanical Properties of Diffusion-Bonded TC4/1060Al Joints

  • Guoqiang Luo
  • Jiayu He
  • Zhenfei Song
  • Jian Zhang
  • Mei Rao
  • Jianjun Mo
  • Yiyu Wang
  • Qiang Shen
  • Lianmeng Zhang
Article
  • 33 Downloads

Abstract

In the present study, dissimilar TC4 alloy and 1060Al alloy were successfully diffusion-bonded at a very low temperature about 410 °C by improving the effective physical contact area. A sound joint with a crack-free interface and a high shear strength (128 MPa) is obtained with a combination of TC4 surface roughness of 109.90 μm (Sa) and 1060Al surface roughness of 101.43 μm (Sa), and customized parallel surface scratches. Under this condition, the two parent metals share the largest contact area during the physical contact stage of diffusion bonding process, which is consistent with the theoretical calculation. The results show that no Ti-Al binary intermetallic compounds are observed at the interface of the joints. The maximum shear strength of the joint reaches 128 MPa with optimized bonding parameters (410 °C for 120 min with a pressure of 20 MPa), which is higher than the shear strength of 1060Al (80 MPa) base metal. The fractography analysis indicates the joints failed with a ductile fracture at the 1060Al side.

Keywords

1060Al alloy diffusion bonding microstructure physical contact area shear strength TC4 alloy 

Notes

Acknowledgments

The authors gratefully acknowledge the sponsorship from the National Natural Science Foundation of China (No. 51572208 and 51521001), 111 Project (B13035), Nature Science Foundation of Hubei Province (2016CFA006), and Joint Fund (No. 6141A02022209). The authors would also like to thank Tiffany Jain, M.S., from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the english text of a draft of this manuscript.

Authors’ Contribution

Guoqiang Luo, Jiayu He, Mei Rao, Jianjun Mo, Yiyu Wang, Qiang Shen, and Lianmeng Zhang conceived and designed the experiments; Jiayu He performed the experiments; Jiayu He, Zhenfei Song, and Jian Zhang analyzed the data; Jiayu He, Guoqaing Luo, Jian Zhang, and Mei Rao wrote the paper.

Conflict of Interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Q. Shen, H. Xiang, M. Li et al., Low Temperature Diffusion Bonding of Ti-6Al-4 V to Oxygen Free Copper with High Bonding Strength Using Pure Ag Interlayer, Rare Met. Mater. Eng., 2015, 44(11), p 2607–2611Google Scholar
  2. 2.
    L.I. Hong, C. Zhang, H.B. Liu et al., Bonding Interface Characteristic and Shear Strength of Diffusion Bonded Ti-17 Titanium Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25(1), p 80–87Google Scholar
  3. 3.
    S.S.S. Afghahi, M. Jafarian, M. Paidar et al., Diffusion Bonding of Al 7075 and Mg AZ31 Alloys: Process Parameters, Microstructural Analysis and Mechanical Properties, Trans. Nonferrous Met. Soc. China, 2016, 26(7), p 1843–1851Google Scholar
  4. 4.
    C.Q. Zhang et al., Microstructural Characterization and Mechanical Properties of High Power Ultrasonic Spot Welded Aluminum Alloy AA6111–TiAl6V4 Dissimilar Joints, Mater. Charact., 2014, 97, p 83–91Google Scholar
  5. 5.
    C.Q. Zhang, J.D. Robson, and P.B. Prangnell, Dissimilar Ultrasonic Spot Welding of Aerospace Aluminum Alloy AA2139 to Titanium Alloy TiAl6V4, J. Mater. Process. Technol., 2016, 231, p 382–388Google Scholar
  6. 6.
    Y. Wei, J. Li, J. Xiong et al., Joining Aluminum to Titanium Alloy by Friction Stir Lap Welding with Cutting Pin, Mater. Charact., 2012, 71(1), p 31–35Google Scholar
  7. 7.
    Q. Yang, S. Mironov, Y.S. Sato et al., Material Flow During Friction Stir Spot Welding, Mater. Sci. Eng., A, 2010, 527(16–17), p 4389–4398Google Scholar
  8. 8.
    Y.C. Chen and K. Nakata, Microstructural Characterization and Mechanical Properties in Friction Stir Welding of Aluminum and Titanium Dissimilar Alloys, Mater. Des., 2009, 30(3), p 469–474Google Scholar
  9. 9.
    Y. Chen, S. Chen, and L. Li, Influence of Interfacial Reaction Layer Morphologies on Crack Initiation and Propagation in Ti/Al Joint by Laser Welding–Brazing, Mater. Des., 2010, 31(1), p 227–233Google Scholar
  10. 10.
    F. Möller, M. Grden, C. Thomy et al., Combined Laser Beam Welding And Brazing Process For Aluminium Titanium Hybrid Structures, Phys. Procedia, 2011, 12(1), p 215–223Google Scholar
  11. 11.
    M. Kreimeyer, F. Wagner, and F. Vollertsen, Laser Processing of Aluminum–Titanium-Tailored Blanks, Opt. Lasers Eng., 2005, 43(9), p 1021–1235Google Scholar
  12. 12.
    J.L. Song, S.B. Lin, C.L. Yang et al., Spreading Behavior and Microstructure Characteristics of Dissimilar Metals TIG Welding–Brazing of Aluminum Alloy to Stainless Steel, Mater. Sci. Eng., A, 2009, 509(1), p 31–40Google Scholar
  13. 13.
    F. Minyu, J. Domblesky, K. Jin et al., Effect of Original Layer Thicknesses on the Interface Bonding and Mechanical Properties of Ti-Al Laminate Composites, Mater. Des., 2016, 99, p 535–542Google Scholar
  14. 14.
    Y. Wang, G. Luo, J. Zhang et al., Microstructure and Mechanical Properties of Diffusion-Bonded Mg-Al Joints Using Silver Film as Interlayer, Mater. Sci. Eng., A, 2013, 559(1), p 868–874Google Scholar
  15. 15.
    J. Zhang, G. Luo, Y. Wang et al., Effect of Al Thin Film and Ni Foil Interlayer on Diffusion Bonded Mg-Al Dissimilar Joints, J. Alloys Compd., 2013, 556(4), p 139–142Google Scholar
  16. 16.
    A.R. Abdullah, M.S. Mohd Afendi, and A. Majid, Effect of Adhesive Thickness on Adhesively Bonded T-joint, IOP Conf. Ser., 2013, 50, p 012063Google Scholar
  17. 17.
    V. Srikanth, A. Laik, and G.K. Dey, Joining of Stainless Steel 304L with Zircaloy-4 by Diffusion Bonding Technique Using Ni and Ti Interlayers, Mater. Des., 2017, 126, p 141–154Google Scholar
  18. 18.
    Z. Li, K. Han, H. Hou et al., Effect of Hydrogen on Diffusion Bonding Behavior and Mechanism of Ti-6Al-4 V Alloy, Rare Met. Mater. Eng., 2014, 43(2), p 306–310Google Scholar
  19. 19.
    K. Faller and F.H. Froes, The Use of Titanium in Family Automobiles: Current Trends, JOM-Us, 2001, 53, p 27–28Google Scholar
  20. 20.
    D. Wang, J. Cao, W. Li et al., Zr Hydrogenation by Cathodic Charging and Its Application in TC4 Alloy Diffusion Bonding, Int. J. Hydrogen Energy, 2016, 42(9), p 6350–6359Google Scholar
  21. 21.
    Y. Wei, A. Wu, G. Zou et al., Formation Process of the Bonding Joint in Ti/Al Diffusion Bonding, Mater. Sci. Eng., A, 2008, 480(1), p 456–463Google Scholar
  22. 22.
    J. Ren, Y. Li, and F. Tao, Microstructure Characteristics in the Interface Zone of Ti/Al Diffusion Bonding, Mater. Lett., 2002, 56(5), p 647–652Google Scholar
  23. 23.
    S. Simões, F. Viana, M. Koçak et al., Diffusion Bonding of TiAl Using Reactive Ni/Al Nanolayers and Ti and Ni Foils, Mater. Chem. Phys., 2011, 128(1), p 202–207Google Scholar
  24. 24.
    B. Derby and E.R. Wallach, Theoretical Model for Diffusion Bonding, Met. Sci. J., 1982, 16(1), p 49–56Google Scholar
  25. 25.
    B. Derby and E.R. Wallach, Diffusion Bonding: Development of Theoretical Model, Met. Sci. J., 2013, 18(9), p 427–431Google Scholar
  26. 26.
    S. Kundu and S. Chatterjee, Effect of Bonding Temperature on Interface Microstructure and Properties of Titanium-304 Stainless Steel Diffusion Bonded Joints with Ni Interlayer, Met. Sci. J., 2006, 22(10), p 1201–1207Google Scholar
  27. 27.
    S. Kundu, S. Chatterjee, D. Olson et al., Effects of Intermetallic Phases on the Bond Strength of Diffusion-Bonded Joints Between Titanium and 304 Stainless Steel Using Nickel Interlayer, Metall. Mater. Trans. A, 2007, 38(9), p 2053–2060Google Scholar
  28. 28.
    A. Zuruzi and L.H. Dong, Effects of Surface Roughness on the Diffusion Bonding of Al Alloy 6061 in Air, Mater. Sci. Eng., A, 1999, 270, p 244–248Google Scholar
  29. 29.
    S.X. Li, S.T. Tu, and F.Z. Xuan, A Probabilistic Model for Prediction of Bonding Time in Diffusion Bonding, Mater. Sci. Eng., A, 2005, 407(1), p 250–255Google Scholar
  30. 30.
    C.H. Hamilton, Pressure Requirements for Diffusion Bonding Titanium [M] Titanium Science and Technology, Springer, Berlin, 1973, p 625–648Google Scholar
  31. 31.
    X. Shao, X. Guo, Y. Han et al., Characterization of the Diffusion Bonding Behavior of Pure Ti and Ni with Different Surface Roughness During Hot Pressing, Mater. Des., 2015, 65, p 1001–1010Google Scholar
  32. 32.
    S. Chen, F. Ke, Z. Min et al., Atomistic Investigation of the Effects of Temperature and Surface Roughness on Diffusion Bonding Between Cu and Al, Acta Mater., 2007, 55(9), p 3169–3175Google Scholar
  33. 33.
    B. Derby and E.R. Wallach, Theoretical Model for Diffusion Bonding, Met. Sci. J., 1982, 16(1), p 49–56Google Scholar
  34. 34.
    A.N. Alhazaa and T.I. Khan, Diffusion Bonding of Al7075 to Ti-6Al-4 V Using Cu Coatings and Sn-3.6Ag-1Cu Interlayers, J. Alloys Compd., 2010, 494(1–2), p 351–358Google Scholar
  35. 35.
    P.F. Zhao, Beijing, China WT HZ. Study on Vacuum Brazing of Dissimilar Alloys of Al-Ti, J. Mater. Eng., 2001, 4, p 25–28Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Guoqiang Luo
    • 1
  • Jiayu He
    • 1
  • Zhenfei Song
    • 2
  • Jian Zhang
    • 1
  • Mei Rao
    • 1
  • Jianjun Mo
    • 2
  • Yiyu Wang
    • 3
  • Qiang Shen
    • 1
  • Lianmeng Zhang
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  3. 3.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations