Radiation Stability of Epoxy-Based Gamma Shielding Material

  • Shailesh JoshiEmail author
  • V. Snehalatha
  • K. Sivasubramanian
  • D. Ponraju
  • V. Jayaraman
  • B. Venkatraman


A comprehensive investigation on the effect of gamma radiation on epoxy-lead oxide composites has been carried out highlighting upon the chemical structure, thermal stability, mechanical stability, surface morphology and gamma attenuation properties. FTIR analysis evidenced the irradiation effect leading to the formation of ketones and amides due to chain scission of the epoxy polymer backbone. Surface damages were observed at high gamma dose in optical micrographs which was controlled by lead oxide. The decrease in thermal stability and activation energy with gamma dose was observed in TGA analysis. Nanoindentation studies demonstrated the decreases in surface hardness and modulus at a higher dose. However, the attenuation properties and XRD spectrum of the composites remain unchanged upon 1000 kGy gamma radiation dose.


attenuation properties epoxy composites gamma radiation radiation stability 



The authors would like to thank Dr. Ch. Kishan Singh, Surface and Nano Science Division, IGCAR for optical microscope analysis. Authors acknowledge Mr. Afijith Nair, Material Chemistry Division, IGCAR for x-ray diffraction studies. The authors are thankful to Dr. Sarita Tripathi, Fuel Chemistry Division, Dr. R. Venkatesan, Head Radiological and Environmental Safety Division and Dr. R. Baskaran, Associate Director, Radiological and Environmental Safety Group, IGCAR for their valuable suggestions.


  1. 1.
    S. Karmakar, F. Lawrence, C. Mallika, and U.K. Mudali, Radiation Degradation of Polytetrafluoroethylene-Lead Composites, J. Mater. Eng. Perform., 2015, 24, p 4409–4414CrossRefGoogle Scholar
  2. 2.
    A.B. Lugao, Selected Polymers Materials for Nuclear Applications, in LAS/ANS 2010 Symposium, 2010.
  3. 3.
    L. Bosland, S. Dickinson, G.A. Glowa, L.E. Herranz, H.C. Kim, D.A. Powers, M. Salay, and S. Tietze, Iodine–Paint Interactions during Nuclear Reactor Severe Accidents, Ann. Nucl. Energy, 2014, 74, p 184–199CrossRefGoogle Scholar
  4. 4.
    R.L. Clough and K.T. Gillen, Investigation of Cable Deterioration Inside Reactor Containment, Nucl. Technol., 1982, 59(2), p 344–354CrossRefGoogle Scholar
  5. 5.
    N.I. Voronik and V.V. Toropova, Polymer Formulations for “dry” Decontamination of the Equipment and Premises of Nuclear Power Plants, Radiochemistry, 2012, 59(2), p 188–192CrossRefGoogle Scholar
  6. 6.
    P.A. Nishad, A. Bhaskarapillai, S. Velmurugan, and S.V. Narasimhan, Cobalt (II) Imprinted Chitosan for Selective Removal of Cobalt During Nuclear Reactor Decontamination, Carbohydr. Polym., 2012, 87(4), p 2690–2696CrossRefGoogle Scholar
  7. 7.
    J.R. Kaczvinsky, J.S. Fritz, D.D. Walker, and M.A. Ebra, Synthesis and Development of Porous Chelating Polymers for the Decontamination of Nuclear Waste, J. Radioanal. Nucl. Chem., 1985, 91(2), p 349–360CrossRefGoogle Scholar
  8. 8.
    R.N. Yastrebinskii, G.G. Bondarenko, and V.I. Pavlenko, Transport Packing Set for Radioactive Waste Based on a Radiation-Protective Polymeric Matrix, Inorg. Mater. Appl. Res., 2015, 6(5), p 473–478CrossRefGoogle Scholar
  9. 9.
    S. Nambiar, E.K. Osei, and J.T.W. Yeow, Polymer Nanocomposite Based Shielding Against Diagnostic X Rays, J. Appl. Polym. Sci., 2012, 127, p 4939CrossRefGoogle Scholar
  10. 10.
    J.P. McCaffrey, E. Mainegra-Hing, and H. Shen, Optimizing Non-Pb Radiation Shielding Materials Using Bilayers, Med. Phys., 2009, 36, p 5586–5594CrossRefGoogle Scholar
  11. 11.
    GhA Eid, A.I. Kany, M.M. El-Toony, I.I. Bashter, and F.A. Gaber, Application of Epoxy/Pb3O4, Composite for Gamma Ray Shielding, Arab. J. Nucl. Sci. Appl., 2013, 46, p 226–233Google Scholar
  12. 12.
    S.H. Hosseini, S.N. Ezzati, and M. Askari, Synthesis, Characterization and x-ray Shielding Properties of Polypyrrole/Lead Nanocomposites, Polym. Adv. Technol., 2014, 26, p 561–568CrossRefGoogle Scholar
  13. 13.
    V. Harish, N. Nagaiah, T.N. Prabhu, and K.T. Varughese, Lead Oxides Filled Isophthalic Resin Polymer Composites for Gamma Radiation Shielding Applications, Indian J. Pure Appl. Phys., 2012, 50, p 847–850Google Scholar
  14. 14.
    H. Chai, X. Tang, M. Ni, F. Chen, Y. Zhang, D. Chen, and Y. Qiu, Preparation and Properties of Novel, Flexible, Lead-Free x-ray-Shielding Materials Containing Tungsten and Bismuth(III) Oxide, J. Appl. Polym. Sci., 2015, 133, p 43012–43018Google Scholar
  15. 15.
    M. Soylu, F.Y. Lambrecht, and O.A. Ersoz, Gamma Radiation Shielding Efficiency of a New Lead-Free Composite Material, J. Radioanal. Nucl. Chem., 2015, 305, p 529–534CrossRefGoogle Scholar
  16. 16.
    R. Li, Y. Gu, Y. Wang, Z. Yang, M. Li, and Z. Zhang, Effect of Particle Size on Gamma Radiation Shielding Property of Gadolinium Oxide Dispersed Epoxy Resin Matrix Composite, Mater. Res. Express, 2017, 4, p 035035CrossRefGoogle Scholar
  17. 17.
    N.Z. Noor Azman, S.A. Siddiqui, and I.M. Low, Synthesis and Characterization of Epoxy Composites Filled with Pb, Bi or W Compound for Shielding of Diagnostic x-rays, Appl. Phys A Mater. Sci. Process., 2013, 110, p 137–144CrossRefGoogle Scholar
  18. 18.
    T. Shirotani, Realistic Torso Phantom for Calibration of In Vivo Transuranic-Nuclide Counting Facilities, J. Nucl. Sci. Technol., 1988, 25, p 875–883CrossRefGoogle Scholar
  19. 19.
    S. Joshi, J.S. Bramhaji Rao, K. Sivasubramanian, R. Kumar, V. Jayaraman, and B. Venkatraman, Lung Tissue Substitute: Synthesis, Characterization and Attenuation Studies for Low Energy Photons, J. Polym. Res., 2017, 24, p 78–85CrossRefGoogle Scholar
  20. 20.
    M.D. Bethesda, in Tissue Substitutes in Radiation Dosimetry and Measurement, International Commission on Radiation Units and Measurements (ICRU), 1989Google Scholar
  21. 21.
    G. Spadaro, A. Valenza, E. Calderaro, and V. Brucato, Molecular Modifications and Crystallization Relationships for Gamma-Irradiated LLDPE/PA6 Blends, Thermochim. Acta, 1993, 227, p 75–82CrossRefGoogle Scholar
  22. 22.
    J. Davenas, I. Stevenson, N. Celette, S. Cambon, J.L. Gardette, A. Rivaton, and L. Vignoud, Stability of Polymers Under Ionising Radiation: The Many Faces of Radiation Interactions With Polymers, Nucl. Instrum. Methods Phys. Res. Sect. B, 2002, 191, p 653–661CrossRefGoogle Scholar
  23. 23.
    H. Wilski, The Radiation Induced Degradation of Polymers. Int. J. Radiat, Appl. Instrum. Part C Radiat. Phys. Chem., 1987, 29, p 1–14Google Scholar
  24. 24.
    A. Charlesby, Atomic Radiation and Polymers: International Series of Monographs on Radiation Effects in Materials, Elsevier, Amsterdam, 2016Google Scholar
  25. 25.
    M. Dole, The Radiation Chemistry of Macromolecules, Vol 2, Elsevier, Amsterdam, 2013Google Scholar
  26. 26.
    M. Dole, The Effects of Ionizing Radiation on Natural and Synthetic High Polymers, J. Am. Chem. Soc., 1958, 80(24), p 6694CrossRefGoogle Scholar
  27. 27.
    N.Z.N. Azman, S.A. Siddique, R. Hart, and I.M. Low, Effect of Particle Size, Filler Loadings and X-ray Tube Voltage on the Transmitted x-ray Transmission in Tungsten Oxide-Epoxy Composites, Appl. Radiat. Isot., 2013, 71, p 62–67CrossRefGoogle Scholar
  28. 28.
    L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang, and W. Zhang, Preparation and Characterization of Tungsten/Epoxy Composites for γ-Rays Radiation Shielding, Nucl. Instrum. Methods Phys. Res. Sect. B, 2015, 356, p 88–93CrossRefGoogle Scholar
  29. 29.
    M. Donget, X. Xue, H. Yang, D. Liu, C. Wang, and Z. Li, A Novel Comprehensive Utilization of Vanadium Slag: As Gamma Ray Shielding Material, J. Hazard. Mater., 2016, 318, p 751–757CrossRefGoogle Scholar
  30. 30.
    Z. Li and X. Xue, Neutron Shielding Properties of Boron-Containing Ore and Epoxy Composites, At. Energy Sci. Technol., 2011, 45(2), p 223–229Google Scholar
  31. 31.
    K. Okuno, Neutron Shielding Material Based on Colemanite and Epoxy Resin, Radiat. Prot. Dosim., 2005, 115, p 258–261CrossRefGoogle Scholar
  32. 32.
    H. Hu, Q. Wang, J. Qin, Y. Wu, T. Zhang, Z. Xie, X. Jiang, G. Zhang, H. Xu, X. Zheng, and J. Zhang, Study on Composite Material for Shielding Mixed Neutron and Gamma Rays, IEEE Trans. Nucl. Sci., 2008, 55, p 2376–2384CrossRefGoogle Scholar
  33. 33.
    A.E.S. Abdo, M.A.E. Sarraf, and F.A. Gaber, Utilization of Ilmenite/Epoxy Composite for Neutrons and Gamma Rays Attenuation, Ann. Nucl. Energy, 2003, 30(2), p 175–187CrossRefGoogle Scholar
  34. 34.
    J.R. Lee, S.J. Park, M.K. Seo, Y.K. Baik, and S.K. Lee, A Study on Physicochemical Properties of Epoxy Coating System for Nuclear Power Plants, Nucl. Eng. Des., 2006, 236, p 931–937CrossRefGoogle Scholar
  35. 35.
    C. Constantinou, in Tissue Substitutes for Particulate Radiations and Their Use in Radiation Dosimetry and Radiotherapy. Ph.D. thesis, University of London, 1978.
  36. 36.
    D.R. White, R.J. Martin, and R. Darlison, Epoxy Resin Based Tissue Substitutes, Br. J. Radiol., 1977, 50, p 814–821CrossRefGoogle Scholar
  37. 37.
    J. Zimmermann, M.Z. Sadeghi, and K.U. Schroeder, The Effect of γ-Radiation on the Mechanical Properties of Structural Adhesive, Int. J. Adhes. Adhes., 2019, 93, p 2–7CrossRefGoogle Scholar
  38. 38.
    N. Rami, H. Meghraoui, R. Ziraoui, T. El khoukhi, M. Mouhib, and A. El Harfi, Influence of Gamma Irradiation on the Chemical and Physical Properties of DGEDDS/PDA and DGEDDS/MDA Epoxy Resins, J. Mater. Environ. Sci., 2010, 1, p 277–288Google Scholar
  39. 39.
    E. Craciun, T. Zaharescu, S. Jipa, A. Mantsch, and I. Jitaru, Gamma Radiation Effects on the Stability of Epoxy Resin Modified with Titania Nanoparticles, Mater. Plast., 2011, 48, p 50–53Google Scholar
  40. 40.
    F. Djouani, Y. Zahra, B. Fayolle, M. Kuntz, and J. Verdu, Degradation of Epoxy Coatings under Gamma Irradiation, Radiat. Phys. Chem., 2013, 82, p 54–62CrossRefGoogle Scholar
  41. 41.
    H.W. Bonin, V.T. Bui, and P.E. Poirier, Effects of Neutrons and Gamma Radiation on High Polymer Epoxy Adhesives, 1995.
  42. 42.
    B. Burton, D. Alexander, H. Klein, A.G. Vasquez, A. Pekarik and C. Henkee, Epoxy formulations using Jeffamine polyetheramines (Huntsman Corp., The woodlands, 2005).
  43. 43.
    M.G. Gonzalez, J.C. Cabanelas, and J. Baselga, Infrared Spectroscopy—Materials Science, Engineering and Technology, vol. 13 (IntechOpen, 2012), p. 261. Google Scholar
  44. 44.
    M. Salagram, V. Krishna Prasad, and K. Subrahmanyam, IR and Optical Study of Pb3O4 (2PbO.PbO2) Glass Containing a Small Amount Of Silica, J. Alloy. Compd., 2002, 335, p 228–232CrossRefGoogle Scholar
  45. 45.
    C. Galant, B. Fayolle, M. Kuntz, and J. Verdu, Thermal and Radio-Oxidation of Epoxy Coatings, Prog. Org. Coat., 2010, 69, p 322–329CrossRefGoogle Scholar
  46. 46.
    N. Longiéras, M. Sebban, P. Palmas, A. Rivaton, and J.L. Gardette, Degradation of Epoxy Resins under High Energy Electron Beam Irradiation: Radio-Oxidation, Polym. Degrad. Stabil., 2007, 92, p 2190–2197CrossRefGoogle Scholar
  47. 47.
    B. Mailhot, S. Morlat-Thérias, M. Ouahioune, and J.L. Gardette, Study of the Degradation of an Epoxy/Amine Resin, 1, Macromol. Chem. Phys., 2005, 206, p 575–584CrossRefGoogle Scholar
  48. 48.
    W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3–20CrossRefGoogle Scholar
  49. 49.
    L. Shen, L. Wang, T. Liu, and C. He, Nanoindentation and Morphological Studies of Epoxy Nanocomposites, Macromol. Mater. Eng., 2006, 291, p 1358–1366CrossRefGoogle Scholar
  50. 50.
    G. Spadaro, S. Alessi, and C. Dispenza, Ionizing Radiation-Induced Cross-Linking and Degradation of Polymers, in Applications of Ionizing Radiation in Materials Processing, ed. by Y. Sun, A.G. Chmielewski (2017), p. 167–182.
  51. 51.
    M.E. Van De Voorde, Action of Ionizing Radiation on Epoxy Resins (No. ORNL-tr-2735; CERN-70-10 (3-6)). European Organization for Nuclear Research, Geneva (Switzerland), 1970.
  52. 52.
    Y. Liu, C. Jingping, W. Xiaofeng, W. Keqin, S. Xiaojun, C. Liang, Z. Hua, and X. Xingyao, Insights into the Effects of γ-Irradiation on the Microstructure, Thermal Stability and Irradiation-Derived Degradation Components of Microcrystalline Cellulose (MCC), RSC Adv., 2015, 5, p 34353–34363CrossRefGoogle Scholar
  53. 53.
    H.H. Horowitz and G. Metzger, A New Analysis of Thermogravimetric Traces, Anal. Chem., 1963, 35, p 1464–1468CrossRefGoogle Scholar
  54. 54.
    R. Gupta, V. Kumar, P.K. Goyal, S.L. Goyal, P. Kandwal, P.K. Mohapatra, and B. Rajeswari, Effect of γ-Irradiation on Thermal Stability of CR-39 Polymer, Adv. Appl. Sci. Res., 2011, 2, p 248–254Google Scholar
  55. 55.
    K.G. Mallikarjun, Thermal Decomposition Kinetics of Ni (II) Chelates of Substituted Chalcones, J. Chem., 2004, 1, p 105–109Google Scholar
  56. 56.
    E.V. Anslyn and D.A. Dougherty, Modern Physical Organic Chemistry, University science books, Mill Valley, 2006Google Scholar
  57. 57.
    R.J. Traub, P.C. Olsen, and J.C. Mcdonald, The Radiological Properties of a Novel Lung Tissue Substitute, Radiat. Prot. Dosim., 2006, 121, p 202–207CrossRefGoogle Scholar
  58. 58.
    S.R. Cherry, J.A. Sorenson, and M.E. Phelps, Physics in Nuclear Medicine e-Book, Elsevier, Amsterdam, 2013Google Scholar
  59. 59.
    G.F. Knoll, Radiation Detection and Measurement, Wiley, Hoboken, 2010Google Scholar
  60. 60.
    J.R. Gavarri, D. Weigel, and A.W. Hewat, Oxydes de plomb. IV. Evolution structurale de l’oxyde Pb3O4 entre 240 et 5° K et mécanisme de la transition, J. Solid State Chem., 1978, 23, p 327–339 (in German)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Radiological and Environmental Safety Division, Safety Quality and Resource Management GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Safety Engineering DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.Materials Chemistry DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  4. 4.Homi Bhabha National InstituteIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations