Hot Rolling Effects on the Microstructure and Chemical Properties of NiTiTa Alloys

  • N. M. Lohan
  • B. Pricop
  • M. Popa
  • E. Matcovschi
  • N. Cimpoeşu
  • R. Cimpoeşu
  • B. Istrate
  • L. G. BujoreanuEmail author


In the present paper, a Ni-37Ti-15Ta (wt.%) shape memory alloy was analyzed in as-cast and hot-rolled conditions, by differential scanning calorimetry, scanning electron microscopy coupled with energy-dispersive spectroscopy, x-ray diffraction and electrochemical tests into a simulated body fluid (SBF). Both processing states experienced reversible martensitic transformations, with lower temperatures of reverse transformation at hot-rolled specimen, where the amount of secondary phases suffered contrary variation tendencies: β-Ta solid solution increased and (Ti,Ta)2Ni intermetallic compound decreased. Hot rolling contributed to the increase in internal stresses which caused a slight decrease of 2θ angle and to the stress-induced formation of B19’ martensite from B2 parent phase. The electrochemical corrosion test, performed in an experimental SBF, emphasized the superior corrosion resistance of as-cast specimen, since it had a lower amount of internal stresses. The corrosion compounds, mostly oxides, were completely removed by ultrasonic cleaning.


corrosion resistance differential scanning calorimetry hot rolling microstructural characterization NiTiTa SMAs 



This work was supported by a research Grant of the TUIASI, Project Number 0273/2018.

Supplementary material

11665_2019_4473_MOESM1_ESM.jpg (98 kb)
Fig. 1(b) Supplement SEM micrographs illustrating the presence of oxygen on the surface of hot-rolled specimen, determined by qualitative EDS analysis performed on the mapping area shown in the upper figure, in specific locations shown in lower figure (JPEG 98 kb)


  1. 1.
    A. Biesiekierski, J. Wang, M.A.-H. Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8, p 1661–1669CrossRefGoogle Scholar
  2. 2.
    S. Shabalovskaya, Biocompatibility of Nitinol for biomedical applications, Biomaterials, Shape Memory Alloys for Biomedical Applications, J. VanHumbeeck, T. Yoneyama, and S. Miyazaki, Ed., Woodhead Publishing, Cambridge, 2009, p 194–233CrossRefGoogle Scholar
  3. 3.
    I. Milošev and B. Kapun, The Corrosion Resistance of Nitinol Alloy in Simulated Physiological Solutions: Part 1: The Effect of Surface Preparation, Mater. Sci. Eng. C, 2012, 32(5), p 1087–1096CrossRefGoogle Scholar
  4. 4.
    M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Manufacturing and Processing of NiTi Implants: A Review, Prog. Mater Sci., 2012, 57(5), p 911–946CrossRefGoogle Scholar
  5. 5.
    S. Shabalovskaya, J. Anderegg, and J. Van Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4, p 447–467CrossRefGoogle Scholar
  6. 6.
    B. Zambelli, V.N. Uversky, and S. Ciurli, Nickel Impact on Human Health: An Intrinsic Disorder Perspective, Biochem. Biophys. Acta., 2016, 1864, p 1714–1731Google Scholar
  7. 7.
    J. Ševčíková, D. Bártková, M. Goldbergová, M. Kuběnová, J. Čermák, J. Frenzel, A. Weiser, and A. Dlouhý, On the Ni-Ion Release Rate from Surfaces of Binary NiTi Shape Memory Alloys, Appl. Surf. Sci., 2018, 427, p 434–443CrossRefGoogle Scholar
  8. 8.
    N. Singh, A. Talapatra, A. Junkaew, T. Duong, S. Gibbons, S. Li, H. Thawabi, E. Olivos, and R. Arróyave, Effect of Ternary Additions to Structural Properties of NiTi Alloys, Comput. Mater. Sci., 2016, 112(A), p 347–355CrossRefGoogle Scholar
  9. 9.
    Y. Du, H. Xu, Y. Zhou, Y. Ouyang, and Z. Jin, Phase Equilibria of the Ni-Ti-Ta System at 927°C, Mater. Sci. Eng. A, 2007, 448(1–2), p 210–215CrossRefGoogle Scholar
  10. 10.
    J. Ma, J. Liu, Z. Wang, F. Xue, K.H. Wu, and K.Z. Pu, Effects of Ta Addition on NiTi Shape Memory Alloys, J. Mater. Sci. Technol., 2000, 16(5), p 534–536Google Scholar
  11. 11.
    C.W. Gong, Y.N. Wang, and D.Z. Yang, Martensitic Transformation of Ni50Ti45Ta5 Shape Memory Alloy, J. Alloy. Compd., 2006, 419, p 61–65CrossRefGoogle Scholar
  12. 12.
    C. Park, S. Kim, H.-E. Kim, and T.-S. Jang, Mechanically Stable Tantalum Coating on a Nano-Roughened NiTi Stent for Enhanced Radiopacity and Biocompatibility, Surf. Coat. Technol., 2016, 305, p 139–145CrossRefGoogle Scholar
  13. 13.
    A.A. Alhumdany, A.K. Abidali, H.J. Abdulredha, Investigation of Wear Behaviour for NiTi Alloys with Yttrium and Tantalum Additions, in IOP Conference Series: Materials Science and Engineering, 2018, vol. 433, p. 012072CrossRefGoogle Scholar
  14. 14.
    W. Haider, N. Munroe, C. Pulletikurthi, P.K. SinghGill, and S. Amruthaluri, A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys, J. Mater. Eng. Perform., 2009, 18, p 760–764CrossRefGoogle Scholar
  15. 15.
    C. Gong, F. Guo, and D. Yang, A Study on Lattice Parameters of Martensite in Ni-Ti-Ta Shape Memory Alloys, J. Alloy. Compd., 2006, 426, p 144–147CrossRefGoogle Scholar
  16. 16.
    C.W. Gong, Y.N. Wang, and D.Z. Yang, Phase Transformation and Second Phases in Ternary Ni-Ti-Ta Shape Memory Alloys, Mater. Chem. Phys., 2006, 96, p 183–187CrossRefGoogle Scholar
  17. 17.
    C. Gong, F. Guo, and Y. Chai, Microstructure Observation of Ni50Ti45Ta5 Shape Memory Alloy, Adv. Mater. Res., 2012, 391–392, p 452–456Google Scholar
  18. 18.
    S. Cai, S.G. Mitchell, L. Wang, J.E. Schaffer, and Y. Ren, Effect of Ta on Microstructures and Mechanical Properties of NiTi Alloys, Shape Mem. Superelasticity, 2019, CrossRefGoogle Scholar
  19. 19.
    F. Qayyum, S. Guk, R. Kawalla, and U. Prahl, Experimental Investigations and Multiscale Modeling to Study the Effect of Sulfur Content on Formability of 16MnCr5 Alloy Steel, Steel Res. Int., 2019, 90, p 1800369CrossRefGoogle Scholar
  20. 20.
    F. Qayyum, M. Shah, S. Manzoor, and M. Abbas, Comparison of Thermomechanical Stresses Produced in Work Rolls During Hot and Cold Rolling of Cartridge Brass 1101, Mater. Sci. Technol., 2015, 2015(31), p 317–324CrossRefGoogle Scholar
  21. 21.
    L.G. Bujoreanu, N.M. Lohan, B. Pricop, and N. Cimpoeşu, Thermal Memory Degradation in a Cu-Zn-Al Shape Memory Alloy During Thermal Cycling with Free Air Cooling, J. Mater. Eng. Perform., 2011, 20, p 468–475CrossRefGoogle Scholar
  22. 22.
    N.M. Lohan, E. Mihalache, B. Pricop, M.G. Suru, and L.G. Bujoreanu, A Study of R-Phase Transition and Temperature Memory Effect in a Commercial Nitinol Wire, J. Optoelectron. Adv. Mater., 2015, 17(9–10), p 1431–1436Google Scholar
  23. 23.
    M. Pattabi and M.S. Murari, Effect of Cold Rolling on Phase Transformation Temperatures of NiTi Shape Memory Alloy, J. Mater. Eng. Perform., 2015, 24, p 556–564CrossRefGoogle Scholar
  24. 24.
    S. Narendranath, V. Desai, S. Basavarajappa, K.V. Arun, and S. ManjunathYadav, Hot Rolling and Ageing Effect on the Pseudoelasticity Behaviour of Ti-Rich TiNi Shape Memory Alloy, J. Miner. Mater. Char. Eng., 2010, 9(4), p 343–351Google Scholar
  25. 25.
    F. Dagdelen and Y. Aydogdu, Transformation Behavior in NiTi-20Ta and NiTi-20Nb SMAs, J. Therm. Anal. Calorim., 2019, 136(2), p 637–642CrossRefGoogle Scholar
  26. 26.
    K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater Sci., 2005, 50, p 511–678CrossRefGoogle Scholar
  27. 27.
    N. Cimpoeşu, F. Sandulache, B. Istrate, R. Cimpoeşu, and G. Zegan, Electrochemical Behavior of Biodegradable FeMnSi-MgCa Alloy, Metals, 2018, 8, p 541–556CrossRefGoogle Scholar
  28. 28.
    R. deOroCalderon, C. Gierl-Mayer, and H. Danninger, Application of Thermal Analysis Techniques to Study the Oxidation/Reduction Phenomena During Sintering of Steels Containing Oxygen-Sensitive Alloying Elements, J. Therm. Anal. Calorim., 2017, 127(1), p 91–105CrossRefGoogle Scholar
  29. 29.
    Y. Li, S. Wei, X. Cheng, T. Zhang, and G. Cheng, Corrosion Behavior and Surface Characterization of Tantalum Implanted TiNi Alloy, Surf. Coat. Technol., 2008, 202(13), p 3017–3022CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • N. M. Lohan
    • 1
  • B. Pricop
    • 1
  • M. Popa
    • 1
  • E. Matcovschi
    • 1
  • N. Cimpoeşu
    • 1
  • R. Cimpoeşu
    • 1
  • B. Istrate
    • 2
  • L. G. Bujoreanu
    • 1
    Email author
  1. 1.Faculty of Materials Science and EngineeringThe “Gheorghe Asachi” Technical University of IaşiIasiRomania
  2. 2.Faculty of Mechanical EngineeringTechnical University of IaşiIasiRomania

Personalised recommendations