Advertisement

Effects of Ta Addition on the Microstructure and Mechanical Properties of CoCu0.5FeNi High-Entropy Alloy

  • Tingting Xu
  • Yiping LuEmail author
  • Zhiqiang Cao
  • Tongmin Wang
  • Tingju Li
Article
  • 70 Downloads

Abstract

In this work, the alloying effects of Ta element on the microstructure evolution and mechanical properties of CoCu0.5FeNiTax (x = 0-0.6 at.%) high-entropy alloys were studied. The microstructure changed from single solid solution to hypoeutectic, then to eutectic, and finally to hypereutectic with the increase in Ta content, which is because Ta element facilitates the Laves phase to form. The volume fraction of hard and brittle Laves phase increases with the Ta content, which increases the yield strength, Vickers hardness and theoretical density but decreases the plastic strain. The CoCu0.5FeNiTa0.1 alloy with a single FCC solid solution structure shows the optimal balance between density and ductility. The theoretical density and tensile fracture strain can reach 8.94 g/cm3 and 36.3%, respectively.

Keywords

high-entropy alloys mechanical properties microstructure 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51671044, 51822402 and 51574058), Dalian Support Plan for Innovation of High-level Talents (Top and Leading Talents, 2015R013), the Fundamental Research Funds for the Central Universities, Dalian Support Plan for Innovation of High-level Talents (Youth Technology Stars, 2016RQ005).

References

  1. 1.
    G. Birkhoff, D.P. MacDougall, E.M. Pugh, and S.G. Taylor, Explosives with Lined Cavities, J. Appl. Phys., 1948, 19(6), p 563–582CrossRefGoogle Scholar
  2. 2.
    S. Lee, J. Kim, S. Kim, S. Lee, J. Jeong, and C. Lee, Performance Comparison of Double-Layer Liner for Shaped Charge Fabricated Using Kinetic Spray, J. Therm. Spray. Tech., 2018, 28(3), p 484–494CrossRefGoogle Scholar
  3. 3.
    H.W. He and S.Y. Jia, Direct Electrodeposition of Cu-Ni-W Alloys for the Liners for Shaped Charges, J. Mater. Sci. Technol., 2010, 26(5), p 429–432CrossRefGoogle Scholar
  4. 4.
    F. Yang, W.H. Tian, C.C. Feng, and B.S. Wang, Crystal Defects Formed in Electroformed Nickel Liners of Shaped Charges, Acta Metall. Sin., 2009, 22(5), p 383–391CrossRefGoogle Scholar
  5. 5.
    F. Yang, C.H. Li, S.W. Cheng, L. Wang, and W.H. Tian, Deformation Behavior of Explosive Detonation in Electroformed Nickel Liner of Shaped Charge with Nano-Sized Grains, Trans. Nonferrous Met. Soc. China, 2010, 20, p 1397–1402CrossRefGoogle Scholar
  6. 6.
    B. Xi, J.X. Liu, S.K. Li, C.C. Cui, W.Q. Guo, and T.T. Wu, Effect of Interaction Mechanism Between Jet and Target on Penetration Performance of Shaped Charge Liner, Mater. Sci. Eng. A, 2012, 553(36), p 142–148CrossRefGoogle Scholar
  7. 7.
    Q. Wei, T. Jiao, K.T. Ramesh, E. Ma, L.J. Kecskes, L. Magness, R. Dowding, V.U. Kazykhanov, and R.Z. Valiev, Mechanical Behavior and Dynamic Failure of High-Strength Ultrafine Grained Tungsten Under Uniaxial Compression, Acta Mater., 2006, 54(1), p 77–87Google Scholar
  8. 8.
    Q. Wei, H.T. Zhang, B.E. Schuster, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L. Magness, and K. Cho, Microstructure and Mechanical Properties of Super-Strong Nanocrystalline Tungsten Processed by High-Pressure Torsion, Acta Mater., 2006, 54(15), p 4079–4089CrossRefGoogle Scholar
  9. 9.
    W. Guo, S.K. Li, F.C. Wang, and M. Wang, Dynamic Recrystallization of Tungsten in a Shaped Charge Liner, Scr. Mater., 2009, 60, p 329–332CrossRefGoogle Scholar
  10. 10.
    H.M. He, L.X. Wang, J. Sun, H.P. Gu, and F.W. Liu, Experiment and Numerical Simulation on Rod-Like Jet Formation by Molybdenum Liner, Explos. Shock Waves, 2013, 33, p 28–33Google Scholar
  11. 11.
    W. Walters, W. Gooch, and M. Burkins, The Penetration Resistance of a Titanium Alloy against Jets From Tantalum Shaped Charge Liners, Int. J. Impact Eng, 2001, 26(1), p 823–830CrossRefGoogle Scholar
  12. 12.
    T.F. Guo, W.B. Li, W.B. Li, and X.W. Hong, Controlling Effect of Tantalum Liner’s Structural Parameters on EFP Formation and Penetration Performance, Chin. J. High Pressure Phys., 2018, 32(3), p 1–6Google Scholar
  13. 13.
    W.Q. Guo, J.X. Liu, Y. Xiao, S.K. Li, Z.Y. Zhao, and J. Cao, Comparison of Penetration Performance and Penetration Mechanism of W-Cu Shaped Charge Liner Against Three Kinds of Target: Pure Copper, Carbon Steel and Ti-6Al-4 V Alloy, Int. J. Refract. Met. Hard Mater., 2016, 60, p 147–153CrossRefGoogle Scholar
  14. 14.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377(1), p 213–218CrossRefGoogle Scholar
  15. 15.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRefGoogle Scholar
  16. 16.
    Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-Off, Nature, 2016, 534, p 227–230CrossRefGoogle Scholar
  17. 17.
    F. Zhang, Y. Wu, H.B. Lou, Z.D. Zeng, V.B. Prakapenka, E. Greeberg, Y. Ren, J.Y. Yan, J.S. Okasinski, X.J. Liu, Y. Liu, Q.S. Zeng, and Z.P. Lu, Polymorphism in a High-Entropy Alloy, Nat. Commun., 2017, 8, p 15687CrossRefGoogle Scholar
  18. 18.
    H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, Mechanical Properties of Refractory High-Entropy Alloys: Experiments and Modeling, J. Alloys Compd., 2017, 696, p 1139–1150CrossRefGoogle Scholar
  19. 19.
    J.W. Qiao, M.L. Bao, Y.J. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang, J.A. Hawk, and M.C. Gao, Rare-Earth High Entropy Alloys with Hexagonal Close-Packed Structure, J. Appl. Phys., 2018, 124, p 195101CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538CrossRefGoogle Scholar
  22. 22.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158CrossRefGoogle Scholar
  23. 23.
    S.M. Oh and S.I. Hong, Microstructural Stability and Mechanical Properties of Equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn Alloys, Mater. Chem. Phys., 2018, 210, p 120–125CrossRefGoogle Scholar
  24. 24.
    T.T. Shun and Y.C. Du, Microstructure and Tensile Behaviors of FCC Al03CoCrFeNi High Entropy Alloy, J. Alloy. Compd., 2009, 479(1), p 157–160CrossRefGoogle Scholar
  25. 25.
    M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, 1st ed., Springer, Cham, 2016CrossRefGoogle Scholar
  26. 26.
    H. Jiang, K.M. Han, D.X. Qiao, Y.P. Lu, Z.Q. Cao, and T.J. Li, Effects of Ta Addition on the Microstructures and Mechanical Properties of CoCrFeNi High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 43–48CrossRefGoogle Scholar
  27. 27.
    L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, and T.J. Li, Effects of Nb Addition on Structural Evolution and Properties of the CoFeNi2V0.5 High-Entropy Alloy, Appl. Phys. A, 2015, 119(1), p 291–297CrossRefGoogle Scholar
  28. 28.
    P. Cui, Y.M. Ma, L.J. Zhang, M.D. Zhang, J.T. Fan, W.Q. Dong, P.F. Yu, and G. Li, Microstructure and Mechanical Behaviors of CoFeNiMnTixAl1-x High Entropy Alloys, Mater. Sci. Eng. A, 2018, 731, p 124–130CrossRefGoogle Scholar
  29. 29.
    D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511CrossRefGoogle Scholar
  30. 30.
    D. Yong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li, Microstructure and Mechanical Properties of Multi-Component AlCrFeNiMox High-Entropy Alloys, J. Alloy. Compd., 2013, 573(10), p 96–101Google Scholar
  31. 31.
    S. Guo, C. Ng, and C.T. Liu, Anomalous Solidification Microstructures in Co-Free AlxCrCuFeNi2 High-Entropy Alloys, J. Alloy. Compd., 2013, 557(10), p 77–81CrossRefGoogle Scholar
  32. 32.
    W.Y. Huo, H. Zhou, F. Fang, X.F. Zhou, Z.H. Xie, and J.Q. Jiang, Microstructure and Properties of Novel CoCrFeNiTax Eutectic High-Entropy Alloys, J. Alloys Compd., 2018, 735, p 897–904CrossRefGoogle Scholar
  33. 33.
    N. Yurchenko, N. Stepanov, and G. Salishchev, Laves-Phase Formation Criterion for High-Entropy Alloys, Mater. Sci. Technol., 2017, 33(1), p 17–22CrossRefGoogle Scholar
  34. 34.
    S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21, p 433–446CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Tingting Xu
    • 1
  • Yiping Lu
    • 1
    Email author
  • Zhiqiang Cao
    • 1
  • Tongmin Wang
    • 1
  • Tingju Li
    • 1
  1. 1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and EngineeringDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations