Cryogenic Treatment of CoCrFeMnNi(NbC) High-Entropy Alloys

  • Erfan AbbasiEmail author
  • Kamran Dehghani


The effect of cryogenic treatment on the microstructure and mechanical properties of CoCrFeMnNi and CoCrFeMnNi(NbC) high-entropy alloys was investigated during annealing. The heat-treated samples were characterized by optical microscopy, scanning electron microscopy–wavelength-dispersive x-ray spectroscopy, x-ray diffraction technique, differential scanning calorimetry, Vickers hardness testing and tensile testing. The results showed a single-phase FCC crystal structure matrix in both alloys during cryogenic treatment and annealing. Cryogenic treatment altered the recrystallization behavior of CoCrFeMnNi high-entropy alloy, while it did not influence the recrystallization of CoCrFeMnNi(NbC) high-entropy alloy. It was also found that cryogenic treatment changed the precipitation behavior of CoCrFeMnNi(NbC) high-entropy alloy during annealing. In both studied high-entropy alloys, the mechanical testing indicated that the cryogenic treatment can effectively reduce the yield strength of cold-rolled samples after annealing. This was primarily attributed to the effect of cryogenic treatment in enhancing crystalline defects annihilation. Furthermore, the cryogenic treatment increased the ultimate tensile strength of CoCrFeMnNi(NbC). A lager plastic deformation and precipitates were considered as the main reasons for the higher ultimate tensile strength.


annealing cryogenic treatment high-entropy alloys hardness microstructural evolution Nb-C addition 



  1. 1.
    J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, and Z.P. Lu, Steady State Flow of the FeCoNiCrMn High Entropy Alloy at Elevated Temperatures, Intermetallics, 2014, 55, p 9–14CrossRefGoogle Scholar
  2. 2.
    D.H. Lee, M.Y. Seok, Y. Zhao, I.C. Choi, J. He, Z. Lu, J.Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J. Jang, Spherical Nanoindentation Creep Behavior of Nanocrystalline and Coarse-Grained CoCrFeMnNi High-Entropy Alloys, Acta Mater., 2016, 109, p 314–322CrossRefGoogle Scholar
  3. 3.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93CrossRefGoogle Scholar
  5. 5.
    E.J. Pickering and N.G. Jones, High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects, Int. Mater. Rev., 2016, 61(3), p 183–202CrossRefGoogle Scholar
  6. 6.
    N.D. Stepanov, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Aging Behavior of the HfNbTaTiZr High Entropy Alloy, Mater. Lett., 2018, 211, p 87–90CrossRefGoogle Scholar
  7. 7.
    M.J. Jang, S. Praveen, H.J. Sung, J.W. Bae, and J. Moon, High-temperature Tensile Deformation Behavior of Hot Rolled CrMnFeCoNi High-Entropy Alloy, J. Alloys Compd., 2018, 730, p 242–248CrossRefGoogle Scholar
  8. 8.
    A. Shabani, M.R. Toroghinejad, A. Shafyei, and P. Cavaliere, Effect of Cold-Rolling on Microstructure, Texture and Mechanical Properties of an Equiatomic FeCrCuMnNi High Entropy Alloy, Materialia, 2018, 1, p 175–184CrossRefGoogle Scholar
  9. 9.
    M. Hassanpour-Esfahania, A. Zarei-Hanzakia, H.R. Abedib, H.S. Kim, and D. Yim, The Enhancement of Transformation Induced Plasticity Effect through Preferentially Oriented Substructure Development in a High Entropy Alloy, Intermetallics, 2019, 109, p 145–156CrossRefGoogle Scholar
  10. 10.
    N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Effect of Thermomechanical Processing on Microstructure and Mechanical Properties of the Carbon-Containing CoCrFeNiMn High Entropy Alloy, J. Alloys Compd., 2017, 693, p 394–405CrossRefGoogle Scholar
  11. 11.
    I.S. Wani, T. Bhattacharjee, S.P.P. Bhattacharjee, S. Guo, and N. Tsuji, Tailoring Nanostructures and Mechanical Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Using Thermomechanical Processing, Mater. Sci. Eng., A, 2016, 675, p 99–109CrossRefGoogle Scholar
  12. 12.
    A.M. Manzoni and U. Glatzel, New Multiphase Compositionally Complex Alloys Driven by the High Entropy Alloy Approach, Mater. Charact., 2019, 147, p 512–532CrossRefGoogle Scholar
  13. 13.
    S. Haas, M. Mosbacher, O.N. Senkov, M. Feuerbacher, J. Freudenberger, S. Gezgin, R. Völkl, and U. Glatzel, Entropy Determination of Single-Phase High Entropy Alloys with Different Crystal Structures Over a Wide Temperature Range, Entropy, 2018, 20(9), p 654–666CrossRefGoogle Scholar
  14. 14.
    A.K. Singla, J. Singh, and V.S. Sharma, Processing of Materials at Cryogenic Temperature and Its Implications in Manufacturing: A Review, Mater. Manuf. Process., 2018, 33(15), p 1603–1640CrossRefGoogle Scholar
  15. 15.
    A. Oppenkowski, S. Weber, and W. Theisen, Evaluation of Factors Influencing Deep Cryogenic Treatment that Affect the Properties of Tool Steels, J. Mater. Process. Technol., 2010, 210, p 1949–1955CrossRefGoogle Scholar
  16. 16.
    D.J. Kamody, Process for the Cryogenic Treatment of Metal Containing Materials. Patent US5259200A, 9 Nov 1993.Google Scholar
  17. 17.
    E. Abbasi and K. Dehghani, Effect of Nb-C Addition on the Microstructure and Mechanical Properties of CoCrFeMnNi High Entropy Alloys during Homogenisation, Mater. Sci. Eng., A, 2019, 753, p 224–231CrossRefGoogle Scholar
  18. 18.
    E. Abbasi and K. Dehghani, Phase Prediction and Microstructure of Centrifugally Cast Non-equiatomic Co-Cr-Fe-Mn-Ni(Nb, C) High Entropy Alloys, J. Alloys Compd., 2019, 783, p 292–299CrossRefGoogle Scholar
  19. 19.
    E. Abbasi, Thermomechanical Processing of CoCrFeMnNi and CoCrFeMnNi(NbC) High Entropy Alloys, Amirkabir University of Technology, Tehran, 2018Google Scholar
  20. 20.
    E. Abbasi, Q. Luo, and D. Owens, A Comparison of Microstructure and Mechanical Properties of Low-Alloy-Medium-Carbon Steels After Quench-Hardening, Mater. Sci. Eng., A, 2018, 725, p 65–75CrossRefGoogle Scholar
  21. 21.
    H. Cheng, H.Y. Wang, Y.C. Xie, Q.H. Tang, and P.Q. Dai, Controllable Fabrication of a Carbide Containing FeCoCrNiMn High-Entropy Alloy: Microstructure and Mechanical Properties, Mater. Sci. Technol., 2017, 33(17), p 2032–2039CrossRefGoogle Scholar
  22. 22.
    K. Amini, A. Akhbarizadeh, and S. Javadpour, Cryogenic Heat Treatment of the Ferrous Materials: A Review of the Current State, Metall. Res. Technol., 2016, 113(6), p 611–623CrossRefGoogle Scholar
  23. 23.
    S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, The Morphology and Crystallography of Lath Martensite in Alloy Steels, Acta Mater., 2006, 54, p 5323–5331CrossRefGoogle Scholar
  24. 24.
    J. Li, B. Gao, Y. Wang, X. Chen, Y. Xin, Sh Tang, B. Liu, Y. Liu, and M. Song, Microstructures and Mechanical Properties of Nano Carbides Reinforced CoCrFeMnNi High Entropy Alloys, J. Alloys Compd., 2019, 792, p 170–179CrossRefGoogle Scholar
  25. 25.
    E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi, Scr. Mater., 2016, 113, p 106–109CrossRefGoogle Scholar
  26. 26.
    S. Dash and N. Brown, An Investigation of the Origin and Growth of Annealing Twins, Acta Metall., 1963, 11, p 1067–1075CrossRefGoogle Scholar
  27. 27.
    T.K. Liu, Z. Wu, A.D. Stoic, Q. Xie, W. Wu, Y.F. Gao, H. Bei, and K. An, Twinning Mediated Work Hardening and Texture Evolution in CrCoFeMnNi High Entropy Alloys at Cryogenic Temperature, Mater. Des., 2017, 131, p 419–427CrossRefGoogle Scholar
  28. 28.
    J. Li, J. Zhou, S. Xu, J. Sheng, S. Huang, Y. Sun, Q. Sun, and E.A. Boateng, Effects of Cryogenic Treatment on Mechanical Properties and Microstructures of IN718 Super-Alloy, Mater. Sci. Eng., A, 2017, 707, p 612–619CrossRefGoogle Scholar
  29. 29.
    A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46(12), p 2817–2829CrossRefGoogle Scholar
  30. 30.
    P. Baldissera and C. Delprete, Deep Cryogenic Treatment: A Bibliographic Review, Open Mech. Eng. J., 2008, 2, p 1–11CrossRefGoogle Scholar
  31. 31.
    M. Schneider, F. Werner, D. Langenkämper, Ch Reinhart, and G. Laplanche, Effect of Temperature and Texture on Hall-Petch Strengthening by Grain and Annealing Twin Boundaries in the MnFeNi Medium-Entropy Alloy, Metals, 2019, 9(9), p 84CrossRefGoogle Scholar
  32. 32.
    E. Abbasi and W.M. Rainforth, Microstructural Evolution during Bainite Transformation in a Vanadium Microalloyed TRIP-Assisted Steel, Mater. Sci. Eng., A, 2016, 651, p 822–830CrossRefGoogle Scholar
  33. 33.
    T. Gladman, Precipitation Hardening in Metals, Mater. Sci. Technol., 1999, 15(1), p 30–36CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Iran’s National Elites FoundationTehranIran

Personalised recommendations