Atomic Layer-Deposited Al2O3 Interlayer for Improved Tribological and Anti-corrosion Properties of TiN Hard Coating on 316L Stainless Steel

  • Ji-Zhou KongEmail author
  • Liang Yin
  • Yan Xuan
  • Ai-Dong Li
  • Qian-Zhi Wang
  • Fei ZhouEmail author


A dense Al2O3 interlayer was inserted into TiN to enhance the tribological and anti-corrosion properties of TiN hard coating via a hybrid process of magnetron sputtering and atomic layer deposition (ALD). The influence of the ALD-Al2O3 layer on the microstructure, mechanical, tribological and anti-corrosion properties of TiN was examined. The TiN-Al2O3 coating exhibits low friction coefficient and specific wear rate, due to the structure change and columnar refinement caused by the addition of amorphous ALD-Al2O3 interlay which improves the mechanical properties of hard coating. The improved corrosion properties of TiN are attributed to the fact that the insulating ALD-Al2O3 used as a sealing layer can prevent the corrosive chlorine ions migrating into the lower TiN layer and block the charge transport in coatings. Moreover, raising the insertion position of ALD-Al2O3 layer away from the steel substrate results in a further increase in the anti-corrosion property of TiN-Al2O3 composite coating.


atomic layer deposition Al2O3 interlayer corrosion TiN hard coating tribological property 



This work is financially supported by “the Fundamental Research Funds for the Central Universities”, No. NS2017030. We would like to acknowledge it for the financial support.


  1. 1.
    Y.A. Albrimi, A. Eddib, J. Douch, Y. Berghoute, M. Hamdani, and R.M. Souto, Electrochemical Behaviour of AISI, 316 Austenitic Stainless Steel in Acidic Media Containing Chloride Ions, Int. J. Electrochem. Sci., 2011, 6, p 4614–4627Google Scholar
  2. 2.
    J. Mondal, A. Marques, L. Aarik, J. Kozlova, A. Simões, and V. Sammelselg, Development of a Thin Ceramic-Graphene Nanolaminate Coating for Corrosion Protection of Stainless Steel, Corros. Sci., 2016, 105, p 161–169CrossRefGoogle Scholar
  3. 3.
    E. Härkönen, B. Díaz, J. Światowska, V. Maurice, A. Seyeux, M. Fenker, L. Tóth, G. Radnóczi, P. Marcus, and M. Ritala, AlxTayOz Mixture Coatings Prepared Using Atomic Layer Deposition for Corrosion Protection of Steel, Chem. Vap. Deposition, 2013, 19, p 194–203CrossRefGoogle Scholar
  4. 4.
    M. Fenker, M. Balzer, and H. Kappl, Corrosion Protection with Hard Coatings on Steel: Past Approaches and Current Research Efforts, Surf. Coat. Technol., 2014, 257, p 182–205CrossRefGoogle Scholar
  5. 5.
    S.K. Tiwari, R.K. Sahu, A.K. Pramanick, and R. Singh, Development of Conversion Coating on Mild Steel Prior to Sol Gel Nanostructured Al2O3 Coating for Enhancement of Corrosion Resistance, Surf. Coat. Technol., 2011, 205, p 4960–4967CrossRefGoogle Scholar
  6. 6.
    B.M. Wilke, L. Zhang, W.P. Li, C.Y. Ning, C.F. Chen, and Y.H. Gu, Corrosion Performance of MAO Coatings on AZ31 Mg Alloy in Simulated Body Fluid vs. Earle’s Balance Salt Solution, Appl. Surf. Sci., 2017, 363, p 328–337CrossRefGoogle Scholar
  7. 7.
    J.Z. Kong, T.J. Hou, Q.Z. Wang, L. Yin, F. Zhou, Z.F. Zhou, and L.K.Y. Li, Influence of Titanium or Aluminum Doping on the Electrochemical Properties of CrN Coatings in Artificial Seawater, Surf. Coat. Technol., 2016, 307, p 118–124CrossRefGoogle Scholar
  8. 8.
    Q.Z. Wang, F. Zhou, Z.F. Zhou, C.D. Wang, W.J. Zhang, L.K.Y. Li, and S.T. Lee, Effect of Titanium or Chromium Content on the Electrochemical Properties of Amorphous Carbon Coatings in Simulated Body Fluid, Electrochim. Acta, 2013, 112, p 603–611CrossRefGoogle Scholar
  9. 9.
    R. Hausbrand, B. Bolado-Escudero, A. Dhont, and J. Wielant, Corrosion of Flame-Assisted CVD silica-Coated Steel Sheet, Corros. Sci., 2012, 61, p 28–34CrossRefGoogle Scholar
  10. 10.
    J. Zuo, Y.N. Xie, J. Zhang, Q.P. Wei, B. Zhou, J.Q. Luo, Y.J. Wang, Z.M. Yu, and Z.G. Tang, TiN Coated Stainless Steel Bracket: Tribological, Corrosion Resistance, Biocompatibility and Mechanical Performance, Surf. Coat. Technol., 2015, 277, p 227–233CrossRefGoogle Scholar
  11. 11.
    Z.X. Wan, T.F. Zhang, H.B.R. Lee, J.H. Yang, W.C. Choi, B.C. Han, K.H. Kim, and S.H. Kwon, Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer Deposited Al2O3 Interlayer, ACS Appl. Mater. Interfaces., 2015, 7, p 26716–26725CrossRefGoogle Scholar
  12. 12.
    E. Martinez, R. Sanjines, A. Karimi, J. Esteve, and F. Levy, Mechanical Properties of Nanocomposite and Multilayered Cr-Si-N Sputtered Thin Films, Surf. Coat. Technol., 2004, 180–181, p 570–574CrossRefGoogle Scholar
  13. 13.
    L. Shan, Y.X. Wang, J.L. Li, H. Li, X.D. Wu, and J.M. Chen, Tribological Behaviours of PVD TiN and TiCN Coatings in Artificial Seawater, Surf. Coat. Technol., 2013, 226, p 40–50CrossRefGoogle Scholar
  14. 14.
    D.V. Shtansky, F.V. Kiryukhantsev-Korneev, A.N. Sheveiko, I.A. Bashkova, O.V. Malochkin, E.A. Levashov, N.B. Dýakonova, and I.V. Lyasotsky, Structure and Properties of Ti-B-N, Ti-Cr-B-(N), and Cr-B-(N) Coatings Deposited by Magnetron Sputtering of Targets Prepared by Self-Propagating High-Temperature Synthesis, Phys. Solid State, 2005, 47, p 252–262CrossRefGoogle Scholar
  15. 15.
    S.K. Tien, J.G. Duh, and J.W. Lee, Oxidation Behavior of Sputtered CrN/AlN Multilayer Coatings During Heat Treatment, Surf. Coat. Technol., 2007, 201, p 5138–5142CrossRefGoogle Scholar
  16. 16.
    H. Cicek, Wear Behaviors of TiN/TiCN/DLC Composite Coatings in Different Environments, Ceram. Int., 2018, 44, p 4853–4858CrossRefGoogle Scholar
  17. 17.
    M. Leskelä and M. Ritala, Atomic Layer Deposition (ALD): From Precursors to Thin Film Structures, Thin Solid Films, 2002, 409, p 138–146CrossRefGoogle Scholar
  18. 18.
    A.I. Abdulagatov, Y. Yan, J.R. Cooper, Y. Zhang, Z.M. Gibbs, A.S. Cavanagh, R.G. Yang, Y.C. Lee, and S.M. George, Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance, ACS Appl. Mater. Interfaces., 2011, 3, p 4593–4601CrossRefGoogle Scholar
  19. 19.
    V. Sammelselg, I. Netšipailo, A. Aidla, A. Tarre, L. Aarik, J. Asari, P. Ritslaid, and J. Aarik, Chemical Resistance of Thin Film Materials Based on Metal Oxides Grown by Atomic Layer Deposition, Thin Solid Films, 2013, 542, p 219–224CrossRefGoogle Scholar
  20. 20.
    E. Marin, A. Lanzutti, L. Guzman, and L. Fedrizzi, Corrosion Protection of AISI, 316 Stainless Steel by ALD Alumina/Titania Nanometric Coatings, J. Coat. Technol. Res., 2011, 8, p 655–659CrossRefGoogle Scholar
  21. 21.
    J.S. Daubert, G.T. Hill, H.N. Gotsch, A.P. Gremaud, J.S. Ovental, P.S. Williams, C.J. Oldham, and G.N. Parsons, Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition, ACS Appl. Mater. Interfaces., 2017, 9, p 4192–4201CrossRefGoogle Scholar
  22. 22.
    J.Z. Kong, C. Ren, G.A. Tai, X. Zhang, A.D. Li, D. Wu, H. Li, and F. Zhou, Ultrathin ZnO Coating for Improved Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Material, J. Power Sources, 2014, 266, p 433–439CrossRefGoogle Scholar
  23. 23.
    E. Härkönen, I. Kolev, B. Díaz, J. Światowsk, V. Maurice, A. Seyeux, P. Marcus, M. Fenker, L. Toth, G. Radnoczi, M. Vehkamäki, and M. Ritala, Sealing of Hard CrN and DLC Coatings with Atomic Layer Deposition, ACS Appl. Mater. Interfaces., 2014, 6, p 1893–1901CrossRefGoogle Scholar
  24. 24.
    E. Marin, L. Guzman, A. Lanzutti, L. Fedrizzi, and M. Saikkonen, Chemical and Electrochemical Characterization of Hybrid PVD + ALD Hard Coatings on Tool Steel, Electrochem. Commun., 2009, 11, p 2060–2063CrossRefGoogle Scholar
  25. 25.
    Q.Z. Wang, F. Zhou, C.D. Wang, M.F. Yuen, M.L. Wang, T. Qian, M. Matsumoto, and J.W. Yan, Comparison of Tribological and Electrochemical Properties of TiN, CrN, TiAlN and a-C: H Coatings in Simulated Body Fluid, Mater. Chem. Phys., 2015, 158, p 74–81CrossRefGoogle Scholar
  26. 26.
    M.B. Cortie, J. Giddings, and A. Dowd, Optical Properties and Plasmon Resonances of Titanium Nitride Nanostructures, Nanotechnology, 2010, 21, p 115201CrossRefGoogle Scholar
  27. 27.
    U. Guler, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev, Plasmonics on the Slope of Enlightenment: The Role of Transition Metal Nitrides, Faraday Discuss., 2015, 178, p 71–86CrossRefGoogle Scholar
  28. 28.
    M. Burke, A. Blake, V. Djara, D. O’Connell, I.M. Povey, K. Cherkaoui, S. Scully, R. Murphy, P.K. Hurley, M.E. Pemble, and A.J. Quinn, High Aspect Ratio Iridescent Three-Dimensional Metal–Insulator–Metal Capacitors Using Atomic Layer Deposition, J. Vac. Sci. Technol., A, 2015, 33, p 01A103CrossRefGoogle Scholar
  29. 29.
    A. Lefevre, D. Ferreira, M. Veillerot, J.P. Barnes, G. Parat, M. Czernohorsky, and F. Lallemand, Reliability Improvements of TiN/Al2O3/TiN for Linear High Voltage Metal–Insulator–Metal Capacitors Using an Optimized Thermal Treatment, J. Vac. Sci. Technol., A, 2017, 35, p 01A111CrossRefGoogle Scholar
  30. 30.
    R. Machunze, A.P. Ehiasarian, F.D. Tichelaar, and G.C. Janssen, Stress and Texture in HIPIMS TiN Thin Films, Thin Solid Films, 2009, 518, p 1561–1565CrossRefGoogle Scholar
  31. 31.
    S. Mahieu and D. Depla, Reactive Sputter Deposition of TiN Layers: Modelling the Growth by chaRacterization of Particle Fluxes Towards the Substrate, J. Phys. D Appl. Phys., 2009, 42, p 53002CrossRefGoogle Scholar
  32. 32.
    G. Li, L. Zhang, F. Cai, Y. Yang, Q. Wang, and S.H. Zhang, Characterization and Corrosion Behaviors of TiN/TiAlN Multilayer Coatings by Ion Source Enhanced Hybrid Arc Ion Plating, Surf. Coat. Technol., 2019, 366, p 355–365CrossRefGoogle Scholar
  33. 33.
    H. Elmkhah, F. Attarzadeh, A. Fattah-alhosseini, and K.H. Kim, Microstructural and Electrochemical Comparison Between TiN Coatings Deposited Through HIPIMS and DCMS Techniques, J. Alloy. Compd., 2018, 735, p 422–429CrossRefGoogle Scholar
  34. 34.
    B. Tian, W. Yue, Z.Q. Fu, Y.H. Gu, C.B. Wang, and J.J. Liu, Surface Properties of Mo-Implanted PVD TiN Coatings Using MEVVA Source, Appl. Surf. Sci., 2013, 280, p 482–488CrossRefGoogle Scholar
  35. 35.
    B. Deng, Y. Tao, and D.L. Guo, Effects of Vanadium Ion Implantation on Microstructure, Mechanical and Tribological Properties of TiN Coatings, Appl. Surf. Sci., 2012, 258, p 9080–9086CrossRefGoogle Scholar
  36. 36.
    Y.Q. Cao, X.R. Zhao, J. Chen, W. Zhang, M. Li, L. Zhu, X.J. Zhang, D. Wu, and A.D. Li, TiOxNy Modified TiO2 Powders Prepared by Plasma Enhanced Atomic Layer Deposition for Highly Visible Light photocatalysis, Sci Rep, 2018, 8, p 72131Google Scholar
  37. 37.
    Q. Wan, H. Ding, M.I. Yousaf, Y.M. Chen, H.D. Liu, L.W. Hu, and B. Yang, Corrosion Behaviors of TiN and Ti-Si-N (with 2.9 at.% and 5.0 at.% Si) Coatings by Electrochemical Impedance Spectroscopy, Thin Solid Films, 2016, 616, p 601–607CrossRefGoogle Scholar
  38. 38.
    A. López, R. Bayón, F. Pagano, A. Igartua, A. Arredondo, J.L. Arana, and J.J. González, Tribocorrosion Behaviour of Mooring High Strength Low Alloy Steels in Synthetic Seawater, Wear, 2015, 338–339, p 1–10CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  3. 3.National Laboratory of Solid State Microstructures, Materials Science and Engineering DepartmentNanjing UniversityNanjingChina
  4. 4.Advanced Analysis and Testing CenterNanjing Forestry UniversityNanjingChina

Personalised recommendations