Effect of Plastic Deformation on Passivation Characteristics of Type 304 Stainless Steel

  • Parag M. AhmedabadiEmail author
  • Vivekanand Kain
  • Ashika Agrawal


Electrochemical response of Type 304 stainless steel, with different levels of plastic deformation, was investigated in solutions containing different amounts of H2SO4 and KSCN at room temperature. Potentiodynamic polarization and double-loop electrochemical potentiokinetic reactivation (DL-EPR) techniques were used to characterize different levels of plastic deformation. The results have indicated that DL-EPR values and passivation current density increased with increase in plastic deformation. The DL-EPR values were correlated well with hardness and fraction of strain-induced martensite. Attack during DL-EPR tests occurred on strain regions within the matrix such as dislocations in austenite and martensite and/or interface between austenite and martensite. No well-defined correlation was observed between the levels of plastic deformation and potentiodynamic polarization behavior.


austenitic stainless steel EPR strain stress-induced martensite 



  1. 1.
    T.J. Angel, Formation of Martensite in Austenitic Stainless Steels, J. Iron Steel Inst., 1954, 177, p 165Google Scholar
  2. 2.
    G.B. Olson and M. Cohen, Kinetics of Strain-Induced Martensite Nucleation, Metall. Trans. A, 1975, 6, p 791CrossRefGoogle Scholar
  3. 3.
    N. Parvathavarthini and R.K. Dayal, Time–Temperature-Sensitization Diagrams and Critical Cooling Rates of Different nitrogen Containing Austenitic Stainless Steels, J. Nucl. Mater., 2010, 399, p 62CrossRefGoogle Scholar
  4. 4.
    R.D. Moser, P.M. Singh, L.F. Kahn, and K.E. Kurtis, Chloride-Induced Corrosion Resistance of High-Strength Stainless Steels in Simulated Alkaline and Carbonated Concrete Pore Solutions, Corros. Sci., 2012, 57, p 241CrossRefGoogle Scholar
  5. 5.
    A.S. Hamada, L.P. Karjalainen, and M.C. Somani, Electrochemical Corrosion Behavior of a Novel Submicron- Grained Austenitic Stainless Steel in an Acid NaCl Solution, Mater. Sci. Eng. A, 2006, 431, p 211CrossRefGoogle Scholar
  6. 6.
    I. Altenberger, B. Scholtes, U. Martin, and H. Oettel, Cyclic Deformation and Near Surface Microstructures of Shot Peened or Deep Rolled Austenitic Stainless Steel AISI, 304, Mater. Sci. Eng. A, 1999, 264, p 1CrossRefGoogle Scholar
  7. 7.
    B.K. Mordyuk, G.I. Propopenko, M.A. Vasylyev, and M.O. Iefimov, Effect of the Structure Evaluation Induced by Ultrasonic Peening on the Corrosion Behavior of AISI-321 Stainless Steel, Mater. Sci. Eng., A, 2007, 458, p 253CrossRefGoogle Scholar
  8. 8.
    H. Chen, X.Z. Guo, W.Y. Chu, K.W. Gao, Y.B. Wang, Y.J. Su, and L.J. Qiao, Martensite Caused by Passive Film-Induced Stress During Stress Corrosion Cracking in Type 304 Stainless Steel, Mater. Sci. Eng. A, 2003, 358, p 122CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, X. Yin, J. Wanga, and F. Yan, Influence of microstructure evolution on tribocorrosion of 304 SS in artificial seawater, Corros. Sci., 2014, 88, p 423CrossRefGoogle Scholar
  10. 10.
    K. Spencer, J.D. Embury, K.T. Conlon, M. Vron, and Y. Brchet, Strengthening Via the Formation of Strain-Induced Martensite in Stainless Steels, Mater. Sci. Eng. A, 2004, 387–389, p 873CrossRefGoogle Scholar
  11. 11.
    J. Talonen, P. Nenonen, G. Pape, and H. Hnninen, Effect of Strain Rate on the Strain-Induced γ → α′ Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels, Metall. Mater. Trans. A, 2004, 36, p 421CrossRefGoogle Scholar
  12. 12.
    A. Wei, H. Gutte, and J. Mola, Contributions of ε and α′ TRIP Effects to the Strength and Ductility of AISI, 304 (X5CrNi18-10) Austenitic Stainless Steel, Metall. Mater. Trans. A, 2016, 47, p 112CrossRefGoogle Scholar
  13. 13.
    Y.S. Kim, S.H. Bak, and S.S. Kim, Effect of Strain-Induced Martensite on Tensile Properties and Hydrogen Embrittlement of 304 Stainless Steel, Metall. Mater. Trans. A, 2016, 47, p 222CrossRefGoogle Scholar
  14. 14.
    M. Martin, S. Weber, C. Izawa, S. Wagner, A. Pundt, and W. Theisen, Influence of Machining-Induced Martensite on Hydrogen-Assisted Fracture of AISI, type 304 Austenitic Stainless Steel, Int. J. Hydrogen Energy, 2011, 36, p 11195CrossRefGoogle Scholar
  15. 15.
    S. Papula, J. Talonen, and H. Hnninen, Effect of Residual Stress and Strain-Induced α′-Martensite on Delayed Cracking of Metastable Austenitic Stainless Steels, Metall. Mater. Trans. A, 2014, 45A, p 1238CrossRefGoogle Scholar
  16. 16.
    E.C. Paredes, A. Bautista, S.M. Alvarez, and F. Velasco, Influence of the Forming Process of Corrugated Stainless Steels on their Corrosion Behavior in Simulated Pore Solutions, Corros. Sci., 2012, 58, p 52CrossRefGoogle Scholar
  17. 17.
    H. Luo, X. Wang, C. Dong, K. Xiaoc, and X. Lic, Effect of Cold Deformation on the Corrosion Behavior of UNS S31803 Duplex Stainless Steel in Simulated Concrete Pore Solution, Corros. Sci., 2017, 124, p 178CrossRefGoogle Scholar
  18. 18.
    H. Luo, H. Su, G. Ying, C. Dong, and X. Li, Effect of Cold Deformation on the Electrochemical Behavior of 304L Stainless Steel in Contaminated Sulfuric Acid Environment, Appl. Surf. Sci., 2017, 425, p 628CrossRefGoogle Scholar
  19. 19.
    X. Feng, X. Lu, L. Guo, and D. Chen, The Effects of Deformation on Corrosion Behavior of Stainless Steel in Chlorides Contaminated Concrete Pore Solution, Int. J. Electrochem. Sci., 2015, 10, p 10677Google Scholar
  20. 20.
    S. He, D. Jiang, and Z. Sun, Effect of Deformation-Induced Martensite on Protective Performance of Passive Film on 304 Stainless Steel, Int. J. Electrochemical. Sci., 2018, 13, p 4700CrossRefGoogle Scholar
  21. 21.
    S. Lozano-Perez, K. Kruska, I. Iyengar, T. Terachi, and T. Yamada, The Role of Cold Work and Applied Stress on Surface Oxidation of 304 Stainless Steel, Corros. Sci., 2012, 56, p 78CrossRefGoogle Scholar
  22. 22.
    S.V. Phadnis, A.K. Satpati, K.P. Muthe, J.C. Vyas, and R.I. Sudaresan, Comparison of Rolled And Heat Treated SS304 in Chloride Solution Using Electrochemical and XPS Techniques, Corros. Sci., 2003, 45, p 2467CrossRefGoogle Scholar
  23. 23.
    Y. Fua, X. Wu, E. Hana, W. Kea, K. Yanga, and Z. Jiang, Effects of Cold Work and Sensitization Treatment on the Corrosion Resistance Of High Nitrogen Stainless Steel in Chloride Solutions, Electrochim. Acta, 2009, 54, p 1618CrossRefGoogle Scholar
  24. 24.
    Lv Jinlong and Luo Hongyun, Effects of Strain and Strain-Induced α′ -Martensite on Passive Films in AISI, 304 Austenitic Stainless Steel, Mater. Sci. Eng., C, 2014, 34, p 484CrossRefGoogle Scholar
  25. 25.
    L. Jinlong and L. Hongyun, The Effects of Grain Refinement and Deformation on Corrosion Resistance of Passive Film Formed on the Surface of 304 Stainless Steels, Mater. Res. Bull., 2015, 70, p 896–907CrossRefGoogle Scholar
  26. 26.
    L. Jinlong, L. Hongyun, and L. Tongxiang, Influence of Pre-deformation and Oxidation in High Temperature Water on Corrosion Resistance of Type 304 Stainless Steel, J. Nucl. Mater., 2015, 466, p 154–161CrossRefGoogle Scholar
  27. 27.
    Q. Wang, B. Zhang, Y. Ren, and K. Yang, Eliminating Detrimental Effect of Cold Working on Pitting Corrosion Resistance in High Nitrogen Austenitic Stainless Steels, Corros. Sci., 2017, 123, p 351CrossRefGoogle Scholar
  28. 28.
    E. Liu, Y. Zhang, L. Zhu, Z. Zeng, and R. Gao, Effect of Strain-Induced Martensite on the Tribocorrosion of AISI, 316L Austenitic Stainless Steel in Seawater, RSC Adv., 2017, 7, p 44923CrossRefGoogle Scholar
  29. 29.
    S. Shukla, A. Patil, and V. Tandon, The Effect of Cold Work by Rolling on Electrochemical Behavior of Cr-Mn Austenitic Stainless Steel in Chloride Environment, Mater. Res. Express, 2018, 5, p 066535CrossRefGoogle Scholar
  30. 30.
    V. Tandon, A. Patil, R. Rathod, and S. Shukla, Influence of Cold Work on Electrochemical Behavior of 316L ASS in PEMFC Environment, Mater. Res. Express., 2018, 5, p 026528CrossRefGoogle Scholar
  31. 31.
    I.T. Hong and C.H. Koo, Antibacterial Properties, Corrosion Resistance and Mechanical Properties of Cu-Modified SUS 304 Stainless Steel, Mater. Sci. Eng. A, 2005, 393, p 213CrossRefGoogle Scholar
  32. 32.
    L. Peguet, B. Malki, and B. Baroux, Influence of Cold Working on the Pitting Corrosion Resistance of Stainless Steels, Corros. Sci., 1933, 2007, p 49Google Scholar
  33. 33.
    S.M. Alvarez, A. Bautista, and F. Velasco, Influence of Strain-Induced Martensite in the Anodic Dissolution of Austenitic Stainless Steels in Acid Medium, Corros. Sci., 2013, 69, p 130CrossRefGoogle Scholar
  34. 34.
    M. Park, K. Kim, G. Shin, and S. Kim, Effects of Strain Induced Martensitic Transformation on the Cavitation Erosion Resistance and Incubation Time of Fe-Cr-Ni-C Alloys, Wear, 2012, 274–275, p 28CrossRefGoogle Scholar
  35. 35.
    J. Yun, G. Shin, M. Park, H. Lee, W. Kang, and S. Kim, Effect of Strain-Induced and -Martensitic Transformation on Cavitation Erosion Resistance in Austenitic Fe-Cr-C-Mn Fe-Cr-C-Mnti Alloys, Wear, 2015, 338–339, p 379CrossRefGoogle Scholar
  36. 36.
    H.R. Bakhsheshi-Rad, B. Haerian, A. Najafizadeh, M.H. Idris, M.R.A. Kadir, E. Hamzah, and M. Daroonparvar, Cold Deformation and Heat Treatment Influence on the Microstructures and Corrosion Behavior of AISI, 304 Stainless Steel, Can. Metall. Quart., 2013, 52, p 449CrossRefGoogle Scholar
  37. 37.
    N. Srinivasan, V. Kain, N. Birbilis, B.S. Kumar, M.N. Gandhi, P.V. Sivaprasad, and I. Samajdar, Plastic Deformation and Corrosion in Austenitic Stainless Steel: A Novel Approach Through Microtexture and Infrared Spectroscopy, Corros. Sci., 2016, 111, p 404–413CrossRefGoogle Scholar
  38. 38.
    P. De Tiedra, Ó. Martín, M. López, and M. San-Juan, Use of EPR Test to Study the Degree of Sensitization in Resistance Spot Welding Joints of AISI, 304 Austenitic Stainless Steel, Corros. Sci., 2011, 53(4), p 1563–1570CrossRefGoogle Scholar
  39. 39.
    R. Cihal, Stefec, On the Development of the Electrochemical Potetiokinetic Method, Electrochim. Acta, 2001, 46, p 3867CrossRefGoogle Scholar
  40. 40.
    A.P. Majidi and M.A. Steicher, The Double Loop Reactivation Method for Detecting Sensitization in AISI, 304 Stainless Steels, Corrosion, 1984, 40, p 584CrossRefGoogle Scholar
  41. 41.
    M. Prohaska, H. Kanduth, G. Mori, R. Grill, and G. Tischler, On the Substitution of Conventional Corrosion Tests by an Electrochemical Potentiokinetic Reactivation Test, Corros. Sci., 2010, 52, p 1582CrossRefGoogle Scholar
  42. 42.
    U. Mudali, R. Dayal, J. Gnanamoorthy, and P. Rodriguez, Relationship between Pitting and Intergranular Corrosion of Nitrogen-bearing Austenitic Stainless Steels, ISIJ Int., 1996, 36, p 799CrossRefGoogle Scholar
  43. 43.
    A. Turnbull, P. Francis, M. Ryan, L. Orkney, A. Griffiths, and B. Hawkins, A Novel Approach to Characterizing the Corrosion Resistance of Super Duplex Stainless Steel Welds, Corrosion, 2002, 58, p 1039CrossRefGoogle Scholar
  44. 44.
    V. Cihal, Intergranular Corrosion of Steels and Alloys, Elsevier Science Publishers, BV, 1984, p 368Google Scholar
  45. 45.
    V. Cihal, T. Shoji, V. Kain, Y. Watanabe, and R. Stefec, Electrochemical Polarization Reactivation Technique: EPR—A Comprehensive Review, Fracture and Reliability Research Institute, Graduate School of Engineering, Sendai, 2004, p 4Google Scholar
  46. 46.
    T. Shintani and Y. Murata, Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction, Acta Mater., 2011, 59, p 4314CrossRefGoogle Scholar
  47. 47.
    M.G. Fontana, Corrosion Engineering, 3rd ed., New Delhi, Tata McGraw Hill edition, 2010, p 471Google Scholar
  48. 48.
    V. Kain, R.C. Prasad, and P.K. De, Testing Sensitization and Predicting Susceptibility to Intergranular Corrosion and Intergranular Stress Corrosion Cracking in Austenitic Stainless Steels, Corrosion, 2002, 58, p 15CrossRefGoogle Scholar
  49. 49.
    V. Kain and Y. Watanabe, Development of a Single Loop EPR Test Method and Its Relation to Grain Boundary Micro- Chemistry for Alloy 600, J. Nucl. Mater., 2002, 302, p 49CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Parag M. Ahmedabadi
    • 1
    Email author
  • Vivekanand Kain
    • 1
  • Ashika Agrawal
    • 2
  1. 1.Materials Science DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia
  2. 2.Metallurgical and Materials Engineering, National Institute of TechnologyRourkelaIndia

Personalised recommendations