Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 11, pp 6980–6992 | Cite as

Influence of the Composition on the Solidification Path, Microstructure Evolution and Mechanical Properties of Al-Cu-Mg Alloys

  • GuangWei ZhaoEmail author
  • Jian Chen
  • Chong Ding
  • MingChun Gu
  • YongSheng Ye
Article
  • 61 Downloads

Abstract

The influence of the initial composition on the solidification path, microstructure evolution, thermophysical properties and mechanical properties of Al-Cu-Mg alloys was investigated. The solidification paths of the investigated alloys were determined by analyzing the solidification structure, and then the experimentally determined paths were compared with those from the calculated results. Three of the investigated alloys experienced typical ternary eutectic solidification, and the other four alloys experienced quasiperitectic reactions. Due to differences in the initial compositions, different eutectic morphologies were formed during the solidification process. The binary eutectic phases, (α-Al + Al2Cu) and (α-Al + Al6CuMg4), and the (α-Al + Al6CuMg4 + Al8Mg5) ternary eutectic phase tended to exhibit divorced growth, and the (α-Al + Al2CuMg), (α-Al + Al6CuMg4) and (α-Al + Al2Cu + Al2CuMg) eutectic phases tended to exhibit coupled growth. The results indicated that the initial composition, solidification path, microstructure and morphology could greatly affect the melting enthalpy, microhardness and compressive strength of the investigated Al-Cu-Mg alloys.

Keywords

Al-Cu-Mg alloy initial compositions microstructure evolution solidification path 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51604162), the Opening Fund of Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance (Grant No. 2017KJX12) and the applied basic research projects of Yichang Science and Technology Bureau (Grant No. A18-302-a05). We wish to thank Harbin Institute of Technology for providing the thermodynamic calculation and data of Al-Cu-Mg alloys.

References

  1. 1.
    S.W. Chen and C.C. Huang, Solidification Curves of Al-Cu, Al-Mg and Al-Cu-Mg Alloys, Acta Mater., 1996, 44, p 1955–1965CrossRefGoogle Scholar
  2. 2.
    A. Roósz and H.E. Exner, Numerical Modelling of Dendritic Solidification in Aluminium-Rich Al-Cu-Mg Alloys, Acta Metall. Mater., 1990, 38, p 375–380CrossRefGoogle Scholar
  3. 3.
    F.Y. Xie, T. Kraft, Y. Zuo, C.H. Moon, and Y.A. Chang, Microstructure and Microsegregation in Al-Rich Al-Cu-Mg Alloys, Acta Mater., 1999, 47, p 489–500CrossRefGoogle Scholar
  4. 4.
    I. Vušanović and M.J.M. Krane, Microsegregation During Solidification of Al-Cu-Mg alloys with Varying Composition, Int. Commun. Heat Mass Transf., 2002, 29, p 1037–1046CrossRefGoogle Scholar
  5. 5.
    Q. Du, D.G. Eskin, and L. Katgerman, An Efficient Technique for Describing a Multi-component Open System Solidification Path, Calphad., 2008, 32, p 478–484CrossRefGoogle Scholar
  6. 6.
    E.H. Yan, X.Z. Li, Y.Q. Su, D.M. Liu, D.M. Xu, J.J. Guo, and H.Z. Fu, Prediction of the Solidification Path of Al-4.37Cu-27.02Mg Ternary Eutectic Alloy with a Unified Microsegregation Model Coupled with Thermo-Calc, Int. J. Mater. Res., 2013, 104, p 244–254CrossRefGoogle Scholar
  7. 7.
    R. Chen, Q.Y. Xu, and B.C. Liu, Simulation of the Dendrite Morphology and Microsegregation in Solidification of Al-Cu-Mg Aluminum Alloys, Acta Metall. Sin., 2015, 28, p 173–181CrossRefGoogle Scholar
  8. 8.
    S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50, p 193–215CrossRefGoogle Scholar
  9. 9.
    S.C. Wang and M.J. Starink, Two Types of S Phase Precipitates in Al-Cu-Mg Alloys, Acta Mater., 2007, 55, p 933–941CrossRefGoogle Scholar
  10. 10.
    J.Z. Liu, S.S. Yang, S.B. Wang, J.H. Chen, and C.L. Wu, The Influence of Cu/Mg Atomic Ratios on Precipitation Scenarios and Mechanical Properties of Al-Cu-Mg Alloys, J. Alloys Compd., 2014, 613, p 139–142CrossRefGoogle Scholar
  11. 11.
    Y. Gan, D. Zhang, W. Zhang, and Y. Li, Effect of Cooling Rate on Microstructure and Mechanical Properties of Squeeze Cast Al-Cu-Mg Alloy, Int. J. Cast Met. Res., 2015, 28, p 50–58CrossRefGoogle Scholar
  12. 12.
    Z.W. Qi, B.Q. Cong, B.J. Qi, H.Y. Sun, G.Z. Jia, and L. Ding, Microstructure and Mechanical Properties of Double-Wire + Arc Additively Manufactured Al-Cu-Mg Alloys, J. Mater. Process. Technol., 2018, 255, p 347–353CrossRefGoogle Scholar
  13. 13.
    R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S.P. Ringer, Solute Clustering in Al-Cu-Mg Alloys During the Early Stages of Elevated Temperature Ageing, Acta Mater., 2010, 58, p 4923–4939CrossRefGoogle Scholar
  14. 14.
    Y.Q. Xu, L.H. Zhan, Z.Y. Ma, M.H. Huang, K. Wang, and Z. Sun, Effect of Heating Rate on Creep Aging Behavior of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2017, 688, p 488–497CrossRefGoogle Scholar
  15. 15.
    Y.Q. Xu, L.H. Zhan, M.H. Huang, R.H. Shen, Z.Y. Ma, L.Z. Xu, K. Wang, and X. Wang, Deformation Behavior of Al-Cu-Mg Alloy during Non-isothermal Creep Age Forming Process, J. Mater. Process Technol., 2018, 255, p 26–34CrossRefGoogle Scholar
  16. 16.
    I. Zuiko and R. Kaibyshev, Aging Behavior of an Al-Cu-Mg Alloy, J. Alloys Compd., 2018, 759, p 108–119CrossRefGoogle Scholar
  17. 17.
    P.L.M. Kanta, V.C. Srivastava, K. Venkateswarlu, S. Paswan, B. Mahato, G. Das, K. Sivaprasad, and K.G. Krishna, Corrosion Behavior of Ultrafine-Grained AA2024 Aluminum Alloy Produced by Cryorolling, Int. J. Miner. Metall. Mater., 2017, 24, p 1293–1305CrossRefGoogle Scholar
  18. 18.
    P. Xia, Z.Y. Liu, W.T. Wu, Q. Zhao, P.Y. Ying, and S. Bai, Texture Effect on Fatigue Crack Propagation Behavior in Annealed Sheets of an Al-Cu-Mg Alloy, JMEPEG, 2018, 27, p 4693–4702CrossRefGoogle Scholar
  19. 19.
    J.K. Sunde, D.N. Johnstone, S. Wenner, A.T.J.V. Helvoort, P.A. Midgley, and R. Holmestad, Crystallographic Relationships of T-/S-phase Aggregates in an Al-Cu-Mg-Ag Alloy, Acta Mater., 2019, 166, p 587–596CrossRefGoogle Scholar
  20. 20.
    S. Bai, X.L. Yi, Z.Y. Liu, J. Wang, J.G. Zhao, and P.Y. Ying, The Influence of Preaging on the Strength and Precipitation Behavior of a Deformed Al-Cu-Mg-Ag Alloy, J. Alloys Compd., 2018, 764, p 62–72CrossRefGoogle Scholar
  21. 21.
    G.W. Bo, F.L. Jiang, Z.Y. Dong, G. Wang, and H. Zhang, Revealing the Influence of Pre-precipitation Microstructure on Hot Workability in an Al-Cu-Mg-Zr Alloy, Mater. Sci. Eng. A, 2019, 755, p 147–157CrossRefGoogle Scholar
  22. 22.
    W.L. Zhang, D.H. Xiao, T. Li, J.D. Du, and D.Y. Ding, Microstructure and Mechanical Properties of Two-stage Aged Al-Cu-Mg-Ag-Sm Alloy, Rare Met., 2019, 38, p 42–51CrossRefGoogle Scholar
  23. 23.
    Y.F. Song, X.F. Ding, X.J. Zhao, L.R. Xiao, and C.X. Yu, The Effect of SiC Addition on the Dimensional Stability of Al-Cu-Mg Alloy, J. Alloys Compd., 2018, 750, p 111–116CrossRefGoogle Scholar
  24. 24.
    J.W. Geng, G. Liu, T.R. Hong, M.L. Wang, D. Chen, N.H. Ma, and H.W. Wang, Tuning the Microstructure Features of In Situ Nano TiB2/Al-Cu-Mg Composites to Enhance Mechanical Properties, J. Alloys Compd., 2019, 775, p 193–201CrossRefGoogle Scholar
  25. 25.
    W.W. Yang, Z.M. Guo, L.C. Guo, H.Q. Cao, J. Luo, and A.P. Ye, In Situ Fabrication and Properties of AlN Dispersion Strengthened 2024 Aluminum Alloy, Int. J. Miner. Metall. Mater., 2014, 21, p 1228–1232CrossRefGoogle Scholar
  26. 26.
    N.S. Anas, R.K. Dash, T.N. Rao, and R. Vijay, Effect of Carbon Nanotubes as Reinforcement on the Mechanical Properties of Aluminum-Copper-Magnesium Alloy, JMEPEG, 2017, 26, p 3376–3386CrossRefGoogle Scholar
  27. 27.
    S.E. Hernández-Martínez, J.J. Cruz-Rivera, C.G. Garay-Reyes, and J.L. Hernández-Rivera, Experimental and Numerical Analyses of the Consolidation Process of AA 7075-2 wt.% ZrO2 Powders by Equal Channel Angular Pressing, JMEPEG, 2019, 28, p 154–161CrossRefGoogle Scholar
  28. 28.
    A. Barros, C. Cruz, A.P. Silva, N. Cheung, A. Garcia, O. Rocha, and A. Moreira, Horizontally Solidified Al-3 wt.%Cu-(05 wt.%Mg) Alloys: Tailoring Thermal Parameters, Microstructure, Microhardness, and Corrosion Behavior, Acta Metall. Sin., 2019, 32, p 695–709CrossRefGoogle Scholar
  29. 29.
    J.O. Lima, C.R. Barbosa, I.A.B. Magno, J.M. Nascimento, A.S. Barros, M.C. Oliveira, F.A. Souza, and O.L. Rocha, Microstructural Evolution During Unsteady-Statehorizontal Solidification of Al-Si-Mg (356) Alloy, Trans. Nonferrous Met. Soc. China, 2018, 28, p 1073–1083CrossRefGoogle Scholar
  30. 30.
    R. Chen, Y.F. Shi, Q.Y. Xu, and B.C. Liu, Effect of Cooling Rate on Solidification Parameters and Microstructure of Al-7Si-0.3Mg-0.15Fe Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24, p 1645–1652CrossRefGoogle Scholar
  31. 31.
    G.W. Zhao, X.Z. Li, D.M. Xu, J.J. Guo, H.Z. Fu, Y. Du, and Y.H. He, Thermo-Calc Based Multicomponent Microsegregation Model and Solidification Paths Calculations, China Foundry, 2012, 9, p 269–274Google Scholar
  32. 32.
    G.W. Zhao, C. Ding, X.C. Ye, C.H. Huang, and H.H. Wu, Influences of Initial Compositions, Dendrite Morphologies and Solid-Back Diffusion on Solidification Path of Al-Si-Mg Alloys, J. Phase Equilib. Diffus., 2018, 39, p 212–225CrossRefGoogle Scholar
  33. 33.
    G.W. Zhao, C. Ding, and M. Gu, Effects of Cooling Rate and Initial Composition on the Solidification Path and Microstructure of Al-Cu-Si Alloys, Int. J. Cast Met. Res., 2019, 32, p 36–45CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • GuangWei Zhao
    • 1
    • 2
    Email author
  • Jian Chen
    • 2
  • Chong Ding
    • 2
  • MingChun Gu
    • 3
  • YongSheng Ye
    • 2
  1. 1.Hubei Key Laboratory of Hydroelectric Machinery Design and MaintenanceChina Three Gorges UniversityYichangChina
  2. 2.College of Mechanical and Power EngineeringChina Three Gorges UniversityYichangChina
  3. 3.Medical CollegeChina Three Gorges UniversityYichangChina

Personalised recommendations