Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 11, pp 6921–6930 | Cite as

Effect of Solution Treatment on the Microstructure, Micromechanical Properties, and Kinetic Parameters of the β → α Phase Transformation during Continuous Cooling of Ti-6Al-4V Titanium Alloy

  • Nabil KherroubaEmail author
  • Denis Carron
  • Mabrouk Bouabdallah
  • Riad Badji
Article
  • 55 Downloads

Abstract

The aim of this study is to examine the effect of solution treatment temperature (STT) on the microstructure, the micromechanical properties, and the kinetic parameters of the β → α phase transformation during continuous cooling of the dual phase titanium alloy Ti-6Al-4V. Increasing the STT from 1050 to 1200 °C delays the formation of the α phase during cooling and increases the value of its activation energy. The microstructural analysis reveals the emergence of αW platelets from protuberances on the αGB/αW interface. The investigation of the morphology of the αW platelets reveals the presence of ledges on their longest side showing a sharp extremity. The micromechanical properties determined by nanoindentation and microhardness tests are almost insensitive to the cooling rate but are strongly affected by the STT; the higher the STT, the lower the overall microhardness of the Ti-6Al-4V alloy. In addition, the STT affects the microhardness and the Young’s modulus of both α and β phases differently; when the STT increases, the microhardness and the Young’s modulus of the α phase decrease, whereas those of the β phase increases.

Keywords

interface instability ledge mechanism nanoindentation partitioning solution treatment Ti-6Al-4V 

Notes

References

  1. 1.
    M.J. Donachie, Titanium: a Technical Guide, 2nd ed., ASM International, Cleveland, 2000Google Scholar
  2. 2.
    L.D. Zardiackas, M.J. Kraay, and H.L. Freese, Ed., Titanium, Niobium and Tantalum for Medical and Surgical Applications, ASTM International, West Conshohocken, 2006Google Scholar
  3. 3.
    S. Banerjee and P. Mukhopadhyay, Phase Transformations Examples from Titanium and Zirconium Alloys, 1st ed., Elsevier, Oxford, 2007Google Scholar
  4. 4.
    G. Lutjering and J.C. Williams, Titanium, 2nd ed., Springer, Berlin, 2007Google Scholar
  5. 5.
    C. Leyens and M. Peters, Ed., Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, Hoboken, 2003Google Scholar
  6. 6.
    C. Cui, B.M. Hu, L. Zhao, and S. Liu, Titanium Alloy Production Technology, Market Prospects and Industry Development, Mater. Des., 2011, 32(3), p 1684–1691.  https://doi.org/10.1016/j.matdes.2010.09.011 CrossRefGoogle Scholar
  7. 7.
    T. Ahmed and H.J. Rack, Phase Transformations During Cooling in α + β Titanium Alloys, Mater. Sci. Eng., A, 1998, 243(1–2), p 206–211.  https://doi.org/10.1016/S0921-5093(97)00802-2 CrossRefGoogle Scholar
  8. 8.
    F.J. Gil, M.P. Ginebra, J.M. Manero, and J.A. Planell, Formation of α-Widmanstätten Structure: Effects of Grain Size and Cooling Rate on the Widmanstätten Morphologies and on the Mechanical Properties in Ti6Al4V alloy, J. Alloys Compd., 2001, 329(1–2), p 142–152.  https://doi.org/10.1016/S0925-8388(01)01571-7 CrossRefGoogle Scholar
  9. 9.
    K. Abbasi, B. Beidokhti, and S.A. Sajjadi, Microstructure and Mechanical Properties of Ti-6Al-4V Welds Using α, Near-α and α + β Filler Alloys, Mater. Sci. Eng., A, 2017, 702, p 272–278.  https://doi.org/10.1016/j.msea.2017.07.027 CrossRefGoogle Scholar
  10. 10.
    H. Shahmir and T.G. Langdon, An Evaluation of the Hexagonal Close-Packed to Face-Centered Cubic Phase Transformation in a Ti-6Al-4V Alloy During High-Pressure Torsion, Mater. Sci. Eng., A, 2017, 704, p 212–217.  https://doi.org/10.1016/j.msea.2017.07.099 CrossRefGoogle Scholar
  11. 11.
    Z.X. Zhang, S.J. Qu, A.H. Feng, and J. Shen, Achieving Grain Refinement and Enhanced Mechanical Properties in Ti–6Al–4V Alloy Produced by Multidirectional Isothermal Forging, Mater. Sci. Eng., A, 2017, 692, p 127–138.  https://doi.org/10.1016/j.msea.2017.07.099 CrossRefGoogle Scholar
  12. 12.
    K. Gu, H. Zhang, B. Zhao, J. Wang, Y. Zhou, and Z. Li, Effect of Cryogenic Treatment and Aging Treatment on the Tensile Properties and Microstructure of Ti-6Al-4V Alloy, Mater. Sci. Eng., A, 2013, 584, p 170–176.  https://doi.org/10.1016/j.msea.2013.07.021 CrossRefGoogle Scholar
  13. 13.
    H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, T.J. Konno, and A. Chiba, Room-Temperature Ductility of Ti-6Al-4V Alloy with α’ Martensite Microstructure, Mater. Sci. Eng., A, 2011, 528(3), p 1512–1520.  https://doi.org/10.1016/j.msea.2010.10.070 CrossRefGoogle Scholar
  14. 14.
    C.A. Dubé, H.I. Aaronson, and R.F. Mehl, La Formation de La Ferrite Proeutectoïde Dans Les Aciers Au Carbone, Rev. Métall., 1958, 55(3), p 201–210CrossRefGoogle Scholar
  15. 15.
    H. Beladi, Q. Chao, and G.S. Rohrer, Variant Selection and Intervariant Crystallographic Planes Distribution in Martensite in a Ti-6Al-4V Alloy, Acta Mater., 2014, 80, p 478–489.  https://doi.org/10.1016/j.actamat.2014.06.064 CrossRefGoogle Scholar
  16. 16.
    W.G. Burgers, On the Process of Transition of the Cubic-Body-Centered Modification into the Hexagonal-Close-Packed Modification of Zirconium, Physica, 1933, 1(7–12), p 561–586Google Scholar
  17. 17.
    I. Katzarov, S. Malinov, and W. Sha, Finite Element Modeling of the Morphology of β to α Phase Transformation in Ti-6Al-4V Alloy, Metall. Mater. Trans. A, 2002, 33(4), p 1027–1040.  https://doi.org/10.1007/s11661-002-0204-4 CrossRefGoogle Scholar
  18. 18.
    L.C. Zhang and L.Y. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 2019, 21(4), p 1–29.  https://doi.org/10.1002/adem.201801215 CrossRefGoogle Scholar
  19. 19.
    R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys, J. Mater. Process. Technol., 2003, 133(1–2), p 84–89.  https://doi.org/10.1016/S0924-0136(02)00248-0 CrossRefGoogle Scholar
  20. 20.
    I. Ghamarian, P. Samimi, V. Dixit, and P.C. Collins, A Constitutive Equation Relating Composition and Microstructure to Properties in Ti-6Al-4V: As Derived Using a Novel Integrated Computational Approach, Metall. Mater. Trans. A, 2015, 46(11), p 5021–5037.  https://doi.org/10.1007/s11661-015-3072-4 CrossRefGoogle Scholar
  21. 21.
    I. Ghamarian, B. Hayes, P. Samimi, B.A. Welk, H.L. Fraser, and P.C. Collins, Developing a Phenomenological Equation to Predict Yield Strength from Composition and Microstructure in β Processed Ti-6Al-4V, Mater. Sci. Eng., A, 2016, 660, p 172–180.  https://doi.org/10.1016/j.msea.2016.02.052 CrossRefGoogle Scholar
  22. 22.
    J. Cai, F. Li, T. Liu, and B. Chen, Investigation of Mechanical Behavior of Quenched Ti-6Al-4V Alloy by Microindentation, Mater. Charact., 2011, 62(3), p 287–293.  https://doi.org/10.1016/j.matchar.2011.01.011 CrossRefGoogle Scholar
  23. 23.
    J. Dong, F. Li, and C. Wang, Micromechanical Behavior Study of α Phase with Different Morphologies of Ti-6Al-4V Alloy by Microindentation, Mater. Sci. Eng., A, 2013, 580, p 105–113.  https://doi.org/10.1016/j.msea.2013.05.032 CrossRefGoogle Scholar
  24. 24.
    E.A. Trofimov, R.Y. Lutfullin, and R.M. Kashaev, Elastic Properties of the Titanium Alloy Ti-6Al-4V, Lett. Mater., 2015, 5(1), p 67–69CrossRefGoogle Scholar
  25. 25.
    A.N. Kolmogorov, On the Statistical Theory of Metal Crystallization, izv. Akad. Nauk. SSSR Ser. Mat., 1937, 3, p 355–360Google Scholar
  26. 26.
    M. Avrami, Kinetics of Phase Change. I: General Theory, J. Chem. Phys., 1939, 7(12), p 1103–1112.  https://doi.org/10.1063/1.1750380 CrossRefGoogle Scholar
  27. 27.
    M. Avrami, Kinetics of Phase Change II: Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys., 1940, 8(2), p 212–224CrossRefGoogle Scholar
  28. 28.
    W.A. Johnson and R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Am Inst Min. Metall. Pet. Eng., 1939, 135, p 416–458Google Scholar
  29. 29.
    J.W. Cahn, Transformation Kinetics During Continuous Cooling, Acta Metall., 2000, 4(6), p 572–575.  https://doi.org/10.1016/0001-6160(56)90158-4 CrossRefGoogle Scholar
  30. 30.
    N. Kherrouba, M. Bouabdallah, R. Badji, D. Carron, and M. Amir, Beta to Alpha Transformation Kinetics and Microstructure of Ti-6Al-4V Alloy During Continuous Cooling, Mater. Chem. Phys., 2016, 181, p 462–469.  https://doi.org/10.1016/j.matchemphys.2016.06.082 CrossRefGoogle Scholar
  31. 31.
    L.C. Zhang and H. Attar, Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review, Adv. Eng. Mater., 2016, 18(4), p 463–475.  https://doi.org/10.1002/adem.201500419 CrossRefGoogle Scholar
  32. 32.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583.  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  33. 33.
    Z. Fan, On the Young’s Moduli of Ti-6Al-4V Alloys, Scr. Metall. Mater., 1993, 29(11), p 1427–1432.  https://doi.org/10.1016/0956-716X(93)90331-L CrossRefGoogle Scholar
  34. 34.
    I. Sen and U. Ramamurty, Elastic Modulus of Ti-6Al-4V-XB Alloys with B up to 0.55 Wt%, Scr. Mater., 2010, 62(1), p 37–40.  https://doi.org/10.1016/j.scriptamat.2009.09.022 CrossRefGoogle Scholar
  35. 35.
    H. Fujii, Continuous Cooling Transformation Characteristics of α + β Titanium Alloys, Nippon Steel Tech. Rep., 1994, 62, p 74–79Google Scholar
  36. 36.
    Z. Sun, S. Guo, and H. Yang, Nucleation and Growth Mechanism of α-Lamellae of Ti Alloy TA15 Cooling from an α + β Phase Field, Acta Mater., 2013, 61(6), p 2057–2064.  https://doi.org/10.1016/j.actamat.2012.12.025 CrossRefGoogle Scholar
  37. 37.
    M. Cabibbo, S. Zherebtsov, S. Mironov, and G. Salishchev, Loss of Coherency and Interphase α/β Angular Deviation from the Burgers Orientation Relationship in a Ti–6Al–4V Alloy Compressed at 800 °C, J. Mater. Sci., 2013, 48(3), p 1100–1110CrossRefGoogle Scholar
  38. 38.
    X. Tan, Y. Kok, W.Q. Toh, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, and C.K. Chua, Revealing Martensitic Transformation and α/β Interface Evolution in Electron Beam Melting Three-Dimensional-Printed Ti-6Al-4V, Sci. Rep., 2016, 6, p 26039CrossRefGoogle Scholar
  39. 39.
    S. Zherebtsov, G. Salishchev, and S. Lee Semiatin, Loss of Coherency of the Alpha/Beta Interface Boundary in Titanium Alloys During Deformation, Philos. Mag. Lett., 2010, 90(12), p 903–914.  https://doi.org/10.1080/09500839.2010.521526 CrossRefGoogle Scholar
  40. 40.
    B. Appolaire, L. Héricher, and E. Aeby-Gautier, Modelling of Phase Transformation Kinetics in Ti Alloys—Isothermal Treatments, Acta Mater., 2005, 53(10), p 3001–3011.  https://doi.org/10.1016/j.actamat.2005.03.014 CrossRefGoogle Scholar
  41. 41.
    D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformation in Metals and Alloys, 3rd ed., CRC Press, Boca Raton, 2009Google Scholar
  42. 42.
    H.I. Aaronson, W.B. Triplett, and G.M. Andes, Phase Transformations in Hypoeutectoid Ti-Cr Alloys, J. Miner. Met. Mater. Soc., 1957, 9(10), p 1227–1235CrossRefGoogle Scholar
  43. 43.
    S. Bein and J. Béchet, Phase Transformation Kinetics and Mechanisms in Titanium Alloys Ti-6.2.4.6, β-CEZ and Ti-10.2.3, J. Phys. IV, 1996, 6, p 99–108.  https://doi.org/10.1051/jp4:1996110 CrossRefGoogle Scholar
  44. 44.
    S. Malinov, Z. Guo, W. Sha, and A. Wilson, Differential Scanning Calorimetry Study and Computer Modeling of Beta ⇒ Alpha Phase Transformation in a Ti-6Al-4 V Alloy, Metall. Mater. Trans. A, 2001, 32(4), p 879–887.  https://doi.org/10.1007/s11661-001-0345-x CrossRefGoogle Scholar
  45. 45.
    A.R. Massih and L.O. Jernkvist, Transformation Kinetics of Zirconium Alloys under Non-Isothermal Conditions, Model. Simul. Mater. Sci. Eng., 2009, 17, p 055002CrossRefGoogle Scholar
  46. 46.
    N.C. Elfer and S.M. Copley, Titanium Science and Technology, G. Lutjering, U. Zwicker, and W. Bunk, Ed., DGM, Oberursel, 1985, p 1789Google Scholar
  47. 47.
    G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong, Hall–Petch Strengthening for the Microhardness of Twelve Nanometer Grain Diameter Electrodeposited Nickel, Scr. Metall., 1986, 20(1), p 93–97.  https://doi.org/10.1016/0036-9748(86)90219-X CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Nabil Kherrouba
    • 1
    Email author
  • Denis Carron
    • 2
  • Mabrouk Bouabdallah
    • 3
  • Riad Badji
    • 1
  1. 1.Research Center in Industrial Technologies CRTICheraga, AlgiersAlgeria
  2. 2.UMR CNRS 6027, IRDLUniv. Bretagne SudLorientFrance
  3. 3.LGSDS – Ecole Nationale PolytechniqueEl Harrach, AlgiersAlgeria

Personalised recommendations