Effect of Microstructure of X-120 Steel on CO2 Corrosion Inhibition by 2-Mercaptobenzimidazole

  • A. K. Larios-Galvez
  • E. Rodriguez-Clemente
  • S. Serna
  • B. Campillo Illanez
  • R. Guardian
  • J. Porcayo-Calderon
  • J. G. Gonzalez-RodriguezEmail author


The use of 2-mercaptobenzimidazole (2MBI) as corrosion inhibitor for API X-120 pipeline with two different microstructures in a CO2-saturated 3.5% NaCl solution has been investigated. One microstructure was predominantly martensitic and bainitic (steel A), whereas the second one was mainly ferritic (steel B). It was found that 2MBI behaved as a mixed type of corrosion inhibitor and it changed the corrosion-controlled mechanism. In the uninhibited solution, steel A had a dissolution rate higher than steel B. However, in the presence of inhibitor, dissolution rate for steel A was lower than that for B because the film-formed inhibitor is adsorbed in a better way for steel A which has smaller precipitates distributed in a more homogeneous way than that for steel B.


CO2 corrosion high-strength steel inhibitor 



  1. 1.
    S.Q. Guo, L.N. Xu, L. Zhang, W. Chang, and M.X. Lu, Characterization of Corrosion Scale Formed on 3Cr Steel in CO2-Saturated Formation Water, Corros. Sci., 2016, 110, p 123–133CrossRefGoogle Scholar
  2. 2.
    M.W. Khalil, T.A.S. Eldin, H.B. Hassan, K. El-Sayed, and Z.A. Hamid, Electrodeposition of Ni-GNS-TiO2 Nanocomposite Coatings as Anticorrosion Film for Mild Steel in Neutral Environment, Surf. Coat. Technol., 2015, 275, p 98–111CrossRefGoogle Scholar
  3. 3.
    Z. Liu, X. Gao, L. Du, J. Li, P. Li, X. Bai, and R.D.K. Misra, Corrosion Behavior of Low-Alloy Pipeline Steel Exposed to H2S/CO2-Saturated Saline Solution, J. Mater. Eng. Perf., 2017, 26, p 1010–1017CrossRefGoogle Scholar
  4. 4.
    A.Q. Fu, Y.R. Feng, R. Cai, J.T. Yuan, C.X. Yin, D.M. Yang, Y. Long, and Z.Q. Bai, Downhole Corrosion Behavior of Ni-W Coated Carbon Steel in Spent Acid & Formation Water and Its Application in Full-Scale Tubing, Eng. Fail. Anal., 2016, 66, p 566–576CrossRefGoogle Scholar
  5. 5.
    Q.Y. Wang, X.Z. Wang, H. Luo, and J.L. Luo, A Study on Corrosion Behavior of Ni-Cr-Mo Laser Coating, 316 Stainless Steel and X70 Steel in Simulated Solutions with H2S and CO2, Surf. Coat. Technol., 2016, 291, p 250–257CrossRefGoogle Scholar
  6. 6.
    S. Paul and R. Mondal, Prediction and Computation of Corrosion Rates of A36 Mild Steel in Oilfield Seawater, J. Mater. Eng. Perf., 2018, 27, p 3174–3183CrossRefGoogle Scholar
  7. 7.
    S. Wang, L. Wang, X. Liu, M. Bao, L. Liu, X. Wang, and C. Ren, Influence of CO2 and H2S Concentration on Hydrogen Permeation Behavior of P110 Steel, Int. J. Electrochem. Sci., 2017, 12, p 10317–10337CrossRefGoogle Scholar
  8. 8.
    Z.Z. Wang, Y.Y. Li, and G.A. Zhang, Inhibitive Effects of Inhibitors on the Galvanic Corrosion Between N80 Carbon Steel and 13Cr Stainless Steel Under Dynamic Supercritical CO2 Conditions, Corros. Sci., 2019, 146, p 121–133CrossRefGoogle Scholar
  9. 9.
    M.V. Azghandi, A. Davoodi, G.A. Farzi, and A. Kosari, Water-Base Acrylic Terpolymer as a Corrosion Inhibitor for SAE1018 in Simulated Sour Petroleum Solution in Stagnant and Hydrodynamic Conditions, Corros. Sci., 2012, 64, p 44–54CrossRefGoogle Scholar
  10. 10.
    H. Tian and Y.F. Cheng, Novel Inhibitors Containing Multi-Functional Groups for Pipeline Corrosion Inhibition in Oilfield Formation Water, Corrosion, 2016, 72, p 472–485Google Scholar
  11. 11.
    G.A. Zhang and Y.F. Cheng, On the Fundamentals of Electrochemical Corrosion of X65 Steel in CO2-Containing Formation Water in the Presence of Acetic Acid in Petroleum Production, Corros. Sci., 2009, 51, p 87–94CrossRefGoogle Scholar
  12. 12.
    Yu Peng, A.E. Hughes, G.B. Deacon, P.C. Junk, Bruce R.W. Hinton, M. Forsyth, J.I. Mardel, and A.E. Somers, A Study of Rare-Earth 3-(4-methylbenzoyl)-Propanoate Compounds as Corrosion Inhibitors for AS1020 Mild Steel in NaCl Solutions, Corros. Sci., 2018, 145, p 199–211CrossRefGoogle Scholar
  13. 13.
    R. Barker, A. Neville, X. Hu, and S. Cushnaghan, Evaluating Inhibitor Performance in CO2-Saturated Erosion-Corrosion Environments, Corrosion, 2015, 71, p 14–29CrossRefGoogle Scholar
  14. 14.
    Y.Z. Li, N. Xu, X.P. Guo, and G.A. Zhang, Inhibition Effect of Imidazoline Inhibitor on the Crevice Corrosion of N80 Carbon Steel in the CO2-Saturated NaCl Solution Containing Acetic Acid, Corros. Sci., 2017, 126, p 127–141CrossRefGoogle Scholar
  15. 15.
    M.P. Desimonea, G. Grundmeier, G. Gordillo, and S.N. Simison, Amphiphilic Amido-Amine as an Effective Corrosion Inhibitor for Mild Steel Exposed to CO2 Saturated Solution: Polarization, EIS and PM-IRRAS Studies, Electrochim. Acta, 2011, 56, p 2990–2998CrossRefGoogle Scholar
  16. 16.
    O. Benali, L. Larabi, M. Traisnel, L. Gengembra, and Y. Harek, Electrochemical, Theoretical and XPS Studies of 2-Mercapto-1-Methylimidazole Adsorption on Carbon Steel in 1 M HClO4, Appl. Surf. Sci., 2007, 253, p 6130–6139CrossRefGoogle Scholar
  17. 17.
    H. Wang, H. Fan, and J. Zheng, Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by a Mercapto-Triazole Compound, Mater. Chem. Phys., 2002, 77, p 655–661CrossRefGoogle Scholar
  18. 18.
    F. El-Hajjaji, M.E. Belghiti, B. Hammouti, S. Jodeh, O. Hamed, H. Lgaz, and R. Salghi, Adsorption and Corrosion Inhibition Effect of 2-Mercaptobenzimidazole (Surfactant) on a Carbon Steel Surface in an Acidic Medium: Experimental and Monte Carlo Simulations, Port. Electrochimica Acta, 2018, 36, p 197–212CrossRefGoogle Scholar
  19. 19.
    J. Aljourani, M.A. Golozar, and K. Raeissi, The Inhibition of Carbon Steel Corrosion in Hydrochloric and Sulfuric Acid Media Using Some Benzimidazole Derivatives, Mater. Chem. Phys., 2010, 121, p 320–325CrossRefGoogle Scholar
  20. 20.
    J.A. Calderon, F.A. Vasquez, and J.A. Carreño, Adsorption and Performance of the 2-Mercaptobenzimidazole as a Carbon Steel Corrosion Inhibitor in EDTA Solutions, Mater. Chem. Phys., 2017, 185, p 218–226CrossRefGoogle Scholar
  21. 21.
    M. Mahdavian and S. Ashhari, Corrosion Inhibition Performance of 2-Mercaptobenzimidazole and 2-Mercaptobenzoxazole Compounds for Protection of Mild Steel in Hydrochloric Acid Solution, Electrochim. Acta, 2010, 55, p 1720–1724CrossRefGoogle Scholar
  22. 22.
    H. Amar, A. Tounsi, A. Makayssi, A. Derja, J. Benzakour, and A. Outzourhit, Corrosion Inhibition of Armco Iron by in Sodium Chloride 3% Media, Corros. Sci., 2007, 49, p 2936–2945CrossRefGoogle Scholar
  23. 23.
    L. Pezzato, M. Lago, K. Brunelli, M. Breda, and I. Calliari, Effect of the Heat Treatment on the Corrosion Resistance of Duplex Stainless Steels, J. Mater. Eng. Perf., 2018, 27, p 3859–3868CrossRefGoogle Scholar
  24. 24.
    L.D. Paolinelli, T. Pérez, and S.N. Simison, The Effect of Pre-corrosion and Steel Microstructure on Inhibitor Performance in CO2 Corrosion, Corros. Sci., 2008, 50, p 2456–2464CrossRefGoogle Scholar
  25. 25.
    D.A. Lopez, W.H. Schreiner, S.R. de Sanchez, and S.N. Simison, The Influence of Inhibitors Molecular Structure and Steel Microstructure on Corrosion Layers in CO2 Corrosion An XPS and SEM Characterization, Appl. Surf. Sci., 2004, 236, p 77–97CrossRefGoogle Scholar
  26. 26.
    D.A. Lopez, S.N. Simison, and S.R. de Sanchez, Inhibitors Performance in CO2 Corrosion EIS Studies on the Interaction Between Their Molecular Structure and Steel Microstructure, Corros. Sci., 2005, 47, p 735–755CrossRefGoogle Scholar
  27. 27.
    F.F. Eliyan and A. Alfantazi, On the Theory of CO2 Corrosion Reactions: Investigating Their Interrelation with the Corrosion Products and API-X100 Steel Microstructure, Corros. Sci., 2014, 85, p 380–393CrossRefGoogle Scholar
  28. 28.
    F.F. Eliyan, F. Icre, and A. Alfantazi, Passivation of HAZs of API-X100 Pipeline Steel in Bicarbonate-Carbonate Solutions at 298 K, Mater. Corros., 2013, 65, p 1162–1171CrossRefGoogle Scholar
  29. 29.
    J.I. Barraza-Fierro, B. Campillo-Illanes, X. Li, and H. Castañeda, Steel Microstructure Effect on Mechanical Properties and Corrosion Behavior of High Strength Low Carbon Steel, Metall. Mater. Trans., 2014, 45A, p 3981–3994CrossRefGoogle Scholar
  30. 30.
    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of Image Analysis, Nat. Methods, 2012, 9, p 671–675Google Scholar
  31. 31.
    S. Nesic, G.T. Solvi, and J. Enerhaug, Comparison of the Rotating Cylinder and Pipe Flow Tests for Flow-Sensitive Carbon Dioxide Corrosion, Corrosion, 1995, 51, p 773–781CrossRefGoogle Scholar
  32. 32.
    Z. Jia, X. Li, C. Du, Z. Liu, and J. Gao, Effect of Acetic Acid on CO2 Corrosion of 3Cr Low-Alloy Steel, Mater. Chem. Phys., 2012, 132, p 258–271CrossRefGoogle Scholar
  33. 33.
    A. Kahyarian, B. Brown, S. Nesic, Electrochemistry of CO2 Corrosion of Mild Steel: Effect of CO2 on Cathodic Currents, Corrosion (in press).
  34. 34.
    D. Burkle, R. De Motte, W. Taleb, A. Kleppe, T. Comyn, S.M. Vargas, A. Neville, and R. Barker, In Situ SR-XRD Study of FeCO3 Precipitation Kinetics onto Carbon Steel in CO2-Containing Environments: The Influence of Brine pH, Electrochim. Acta, 2017, 255, p 127–144CrossRefGoogle Scholar
  35. 35.
    L.J. Oblonsky, G.R. Chesnut, and T.M. Devine, Adsorption of Octadecyldimethylbenzylammonium Chloride to Two Carbon–Steel Microstructures as Observed with Surface-Enhanced Raman-Spectroscopy, Corros. Sci., 1995, 51, p 891–900CrossRefGoogle Scholar
  36. 36.
    M. Behpour, S.M. Ghoreishi, M. Salavati-Niasari, and B. Ebrahimi, Evaluating Two New Synthesized S-N Schiff Bases on the Corrosion of Copper in 15% Hydrochloric Acid, Mater. Chem. Phys., 2008, 107, p 153–157CrossRefGoogle Scholar
  37. 37.
    I.D. Raistrick, Impedance Studies of Porous Electrodes, Electrochim. Acta, 1990, 25, p 1579–1586CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • A. K. Larios-Galvez
    • 1
  • E. Rodriguez-Clemente
    • 2
  • S. Serna
    • 1
  • B. Campillo Illanez
    • 3
    • 4
  • R. Guardian
    • 1
  • J. Porcayo-Calderon
    • 1
  • J. G. Gonzalez-Rodriguez
    • 1
    Email author
  1. 1.CIICApUniversidad Autonoma del Estado de MorelosCuernavacaMexico
  2. 2.Ing. De MaterialesUniversidad Autonoma Metropolitana-AzcapotzalcoMexicoMexico
  3. 3.Fac. de QuimicaUniversidad Nacional Autonoma de MexicoCiudad de MéxicoMexico
  4. 4.Instituto de Ciencias FisicasUniversidad Nacional Autonoma de MexicoCuernavacaMexico

Personalised recommendations