Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 11, pp 6874–6884 | Cite as

Electrochemical Behavior of Cu60Zr25Ti15 Bulk Metallic Glass with the Addition of Nb and Mo

  • Soumen Mandal
  • B. Sivakumar
  • Y. N. Singhbabu
  • N. R. Bandyopadhyay
  • P. P. Chattopadhyay
  • Ansu J. KailathEmail author
Article
  • 87 Downloads

Abstract

This paper reports the changes in the electrochemical behavior of Cu60Zr25Ti15 bulk metallic glass (BMG) with the addition of 1 at.% Mo and Nb in 3.5 wt.% NaCl aqueous solution. Electrochemical methods employed for the study are open-circuit potential (OCP) and potentiodynamic polarization. The OCP values of the parent BMG and minor-alloyed BMGs differ only marginally. However, potentiodynamic studies show slightly higher corrosion resistance for the minor-alloyed BMGs than that of the parent alloy. Polarized surfaces of all the samples, examined under a scanning electron microscope (SEM), reveal pits formed due to corrosion. Corrosion products are analyzed by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Higher corrosion resistance observed for Nb- or Mo-added BMGs is attributed to the formation of NbO2/Nb2O5 and MoO2, respectively, besides the oxides of other constituent elements.

Keywords

binding energy bulk metallic glass (BMG) pitting corrosion polarization 

Notes

Acknowledgments

CSIR-NML for funding the inner house project (OLP-203) is greatly acknowledged. The help received from Ms. Moumita and Ms. Siuli (CSIR-NML) in capturing TEM and SEM micrographs is acknowledged. Dr. Soumen Mandal acknowledges the research fellowship received from MHRD, India.

References

  1. 1.
    H.B. Yu, J. Hu, X.X. Xia, B.A. Sun, X.X. Li, W.H. Wang, and H.Y. Bai, Stress-Induced Structural Inhomogeneity and Plasticity of Bulk Metallic Glasses, Scr. Mater., 2009, 61(6), p 640–643CrossRefGoogle Scholar
  2. 2.
    L.K. Zhang, Z.H. Chen, D. Chen, X.Y. Zhao, and Q. Zheng, Four-Point-Bending-Fatigue Behavior of the Cu45Zr45Ag7Al3 Bulk Metallic Glass, J. Non Cryst. Solids, 2013, 370, p 31–36CrossRefGoogle Scholar
  3. 3.
    W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, MRS Bull., 1999, 24(10), p 42–56CrossRefGoogle Scholar
  4. 4.
    S.S. Chen, H.R. Zhang, and I. Todd, Phase-Separation-Enhanced Plasticity in a Cu47.2Zr46.5Al5.5Nb0.8 Bulk Metallic Glass, Scr. Mater., 2014, 72–73, p 47–50CrossRefGoogle Scholar
  5. 5.
    A. Gebert, K. Mummert, J. Eckert, L. Schultz, and A. Inoue, Electrochemical Investigations on the Bulk Glass Forming Zr55Cu30Al10Ni5 Alloy, Mater. Corros., 1997, 48(5), p 293–297CrossRefGoogle Scholar
  6. 6.
    A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-Strength Cu-Based Bulk Glassy Alloys in Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems, Acta Mater., 2001, 49(14), p 2645–2652CrossRefGoogle Scholar
  7. 7.
    A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Thermal and Mechanical Properties of Cu-Based Cu-Zr-Ti Bulk Glassy Alloys, Mater. Trans., 2001, 42(6), p 1149–1151CrossRefGoogle Scholar
  8. 8.
    Y.C. Kim, J.C. Lee, P.R. Cha, J.P. Ahn, and E. Fleury, Enhanced Glass Forming Ability and Mechanical Properties of New Cu-Based Bulk Metallic Glasses, Mater. Sci. Eng. A, 2006, 437(2), p 248–253CrossRefGoogle Scholar
  9. 9.
    P. Jinhong, P. Ye, W. Jili, and H. Xiancong, Influence of Minor Addition of In on Corrosion Resistance of Cu-Based Bulk Metallic Glasses in 3.5% NaCl Solution, Rare Met. Mater. Eng., 2014, 43(1), p 32–35CrossRefGoogle Scholar
  10. 10.
    M.K. Tam and C.H. Shek, Crystallization and Corrosion Resistance of Cu50Zr45Al5 Bulk Amorphous Alloy, Mater. Chem. Phys., 2006, 100(1), p 34–37CrossRefGoogle Scholar
  11. 11.
    K. Asami, C.L. Qin, T. Zhang, and A. Inoue, Effect of Additional Elements on the Corrosion Behavior of a Cu-Zr-Ti Bulk Metallic Glass, Mater. Sci. Eng. A, 2004, 375, p 235–239CrossRefGoogle Scholar
  12. 12.
    T. Yamamoto, C. Qin, T. Zhang, K. Asami, and A. Inoue, Formation, Thermal Stability, Mechanical Properties and Corrosion Resistance of Cu-Zr-Ti-Ni-Nb Bulk Glassy Alloys, Mater. Trans., 2003, 44(6), p 1147–1152CrossRefGoogle Scholar
  13. 13.
    A.J. Kailath, and S. Mandal, An improved suction casting assembly for the preparation of bulk metallic glass, Indian Patent Office Journal, 2016, 2851DEL2014.Google Scholar
  14. 14.
    Z.M. Wang, Y.T. Ma, J. Zhang, W.L. Hou, X.C. Chang, and J.Q. Wang, Influence of Yttrium as a Minority Alloying Element on the Corrosion Behaviour in Fe-Based Bulk Metallic Glasses, Electrochem. Acta, 2008, 54, p 261–269CrossRefGoogle Scholar
  15. 15.
    R. Babilas, A. Bajorek, A. Radon, and R. Nowosielski, Corrosion study of resorbable Ca60Mg15Zn25 bulk metallic glasses in physiological fluids, Prog. Nat. Sci. Mater. Int., 2017, 27, p 627–634CrossRefGoogle Scholar
  16. 16.
    R. Nowosielski, K.C. Andraczke, P. Sakiewicz, A. Maciej, A.J. Kolon, and R. Babilas, Corrosion of Biocompatible Mg66−xZn30−xCa4(x = 0.2) Bulk Metallic Glasses, Arch. Metall. Mater., 2016, 61(2), p 807–810CrossRefGoogle Scholar
  17. 17.
    W.K. An, A.H. Cai, X. Xiong, Y. Liu, Y. Luo, T.L. Li, and X.S. Li, Corrosion Behavior of Cu60Zr30Ti10 Metallic Glass in the Cl–Containing Solution, Mater. Sci. Appl., 2011, 2(06), p 546–554Google Scholar
  18. 18.
    D.M. Miskovic, K. Pohl, N. Birbils, K.J. Laws, and M. Ferry, Examining the Elemental Contribution Towards the Biodegradation of Mg-Zn-Ca Ternary Metallic Glasses, J. Mater. Chem B, 2016, 4, p 2679–2690CrossRefGoogle Scholar
  19. 19.
    X.P. Nie, X.M. Xu, Q.K. Jiang, L.Y. Chen, Y. Xu, Y.Z. Fang, G.Q. Xie, M.F. Luo, F.M. Wu, X.D. Wang, Q.P. Cao, and J.Z. Jiang, Effect of Microalloying of Nb on Corrosion Resistance and Thermal Stability of ZrCu-Based Bulk Metallic Glasses, J. Non Cryst. Solids, 2009, 355, p 203–207CrossRefGoogle Scholar
  20. 20.
    A.V. Naumkin, A.K. Vass, S.W. Gaarenstroom, and C.J. Powell, NIST X-ray Photoelectron Spectroscopy Database (2012), NIST Standard Reference Database 20, Version 4.1. http://dx.doi.org/10.18434/T4T88K
  21. 21.
    Y.K. Hsu, C.H. Yu, Y.C. Chen, and Y.G. Lin, Hierarchical Cu2O Photocathodes with Nano/Microspheres for Solar Hydrogen Generation, RSC Adv., 2012, 2(32), p 12455–12459CrossRefGoogle Scholar
  22. 22.
    P.Y. Lee, Y.M. Cheng, J.Y. Chen, and C.J. Hu, Formation and Corrosion Behaviour of Mechanically Alloyed Cu-Zr-Ti BULK METALLIC Glasses, Metals, 2017, 7(148), p 1–12Google Scholar
  23. 23.
    L. You, J. Tang, J. Qiao, H. Wang, Y. Wang, M. Apreutesei, M. Charnas, and M. Duan, Effect of Yttrium on Corrosion Resistance of Zr-Based Bulk Metallic Glasses in NaCl Solution, Int. J. Electrochem. Sci., 2017, 12, p 6506–6519CrossRefGoogle Scholar
  24. 24.
    C. Qin, W. Zhao, and A. Inoue, Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses, Int. J. Mol. Sci., 2011, 12(4), p 2275–2293CrossRefGoogle Scholar
  25. 25.
    T. Hanawa, S. Hiromoto, A. Yamamoto, D. Kuroda, and K. Asami, XPS Characterization of the Surface Oxide Film of 316L Stainless Steel Samples that were Located in Quasi-Biological Environments, Mater. Trans., 2002, 43(12), p 3088–3092CrossRefGoogle Scholar
  26. 26.
    M.K. Tam, S.J. Pang, and C.H. Shek, Corrosion Behavior and Glass-Forming Ability of Cu-Zr-Al-Nb Alloys, J. Non Cryst. Solids, 2007, 353(32–40), p 3596–3599CrossRefGoogle Scholar
  27. 27.
    A.H. Cai, X. Xiong, Y. Liu, W.K. An, G.J. Zhou, Y. Luo, and T.L. Li, Corrosion Behavior of Cu55Zr35Ti10 Metallic Glass in the Chloride Media, Mater. Chem. Phys., 2012, 134(2–3), p 938–944CrossRefGoogle Scholar
  28. 28.
    Y. Wang, S.L. Jiang, Y.G. Zheng, W. Ke, W.H. Sun, and J.Q. Wang, Effect of Molybdenum, Manganese and Tungsten Contents on the Corrosion Behavior and Hardness of Iron-Based Metallic Glasses, Mater. Corros., 2014, 65(7), p 733–741CrossRefGoogle Scholar
  29. 29.
    H.B. Lu, Y. Li, and F.H. Wang, Dealloying Behavior of Cu-20Zr Alloy in Hydrochloric Acid Solution, Corros. Sci., 2006, 48(8), p 2106–2119CrossRefGoogle Scholar
  30. 30.
    A. Gebert, U. Kuehn, S. Baunack, N. Mattern, and L. Schultz, Pitting Corrosion Of Zirconium-Based Bulk Glass-Matrix Composites, Mater. Sci. Eng. A, 2006, 415(1–2), p 242–249CrossRefGoogle Scholar
  31. 31.
    P.F. Gostin, A. Gebert, and L. Schultz, Comparison of the Corrosion of Bulk Amorphous Steel with Conventional Steel, Corros. Sci., 2010, 52(1), p 273–281CrossRefGoogle Scholar
  32. 32.
    C. Zhang, N. Qiu, L. Kong, X. Yang, and H. Li, Thermodynamic and Structural Basis for Electrochemical Response of Cu-Zr Based Metallic Glass, J. Alloys Compd., 2015, 645, p 487–490CrossRefGoogle Scholar
  33. 33.
    S. Vincent, A.F. Khan, B.S. Murty, and J. Bhatt, Corrosion Characterization on Melt Spun Cu60Zr20Ti20 Metallic Glass: An Experimental Case Study, J. Non-Cryst. Solids, 2013, 379, p 48–53CrossRefGoogle Scholar
  34. 34.
    N. Baca, R.D. Conner, and S.J. Garrett, Corrosion Behavior of Oxide-Covered Cu47Ti34Zr11Ni8 (Vitreloy 101) in Chloride-Containing Solutions, Mater. Sci. Eng. B, 2014, 184, p 105–112CrossRefGoogle Scholar
  35. 35.
    L. Liu and B. Liu, Influence of the Micro-addition of Mo on Glass Forming Ability and Corrosion Resistance of Cu-Based Bulk Metallic Glasses, Electrochim. Acta, 2006, 51(18), p 3724–3730CrossRefGoogle Scholar
  36. 36.
    B. Liu and L. Liu, The Effect of Microalloying on Thermal Stability and Corrosion Resistance of Cu-Based Bulk Metallic Glasses, Mater. Sci. Eng. A, 2006, 415(1–2), p 286–290CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Soumen Mandal
    • 1
    • 2
  • B. Sivakumar
    • 1
  • Y. N. Singhbabu
    • 1
  • N. R. Bandyopadhyay
    • 2
  • P. P. Chattopadhyay
    • 2
  • Ansu J. Kailath
    • 1
    Email author
  1. 1.CSIR-National Metallurgical LaboratoryJamshedpurIndia
  2. 2.Indian Institute of Engineering Science and TechnologyShibpur, HowrahIndia

Personalised recommendations