Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 10, pp 6025–6032 | Cite as

Investigation of Mode I Notch Toughness of Zr41.2Ti13.8Cu10Ni12.5Be22.5 Metallic Glass under Dynamic Loading Conditions

  • Zhiyong WangEmail author
  • Zhipeng Zhou
  • Zhiming Jiao
  • Jing Gu
  • Junwei Qiao
  • Zhihua WangEmail author
Article
  • 61 Downloads

Abstract

Based on dynamic three-point bending tests, the dynamic notch toughness (\( K_{\text{Q}}^{\text{d}} \)) of Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) was found to be sensitive to stress intensity factor rate (\( \dot{K}_{\text{Q}}^{\text{d}} \)), which varied from 5.21 to 31.90 MPa m1/2. The number of shear bands (Ns) in the notch tip plastic zone was quantitatively analyzed. The phenomenon wherein Ns decreased with increasing loading rate was explained based on the theory of the shear transformation zone and the softening mechanism. Then, power law relationships were established among Ns, \( K_{\text{Q}}^{\text{d}} \) and \( \dot{K}_{\text{Q}}^{\text{d}} \). The results showed that shear bands can affect \( K_{\text{Q}}^{\text{d}} \) and \( \dot{K}_{\text{Q}}^{\text{d}} \) and act as a bridge connecting \( K_{\text{Q}}^{\text{d}} \) and \( \dot{K}_{\text{Q}}^{\text{d}} \). The sensitivity of \( K_{\text{Q}}^{\text{d}} \) to \( \dot{K}_{\text{Q}}^{\text{d}} \) in BMGs can be well explained by the variation of Ns with loading rate.

Keywords

bulk metallic glass dynamic notch toughness plastic deformation stress intensity factor rate 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11390362, 11702186), the ‘‘1331” Key Innovation Teams of Shanxi Province, Natural Science Foundation of Shanxi Province (201701D221010), Science and Technology Project of Qinghai Province (2017-ZJ-783), and the financial contributions are gratefully acknowledged.

References

  1. 1.
    B.A. Sun and W.H. Wang, The Fracture of Bulk Metallic Glasses, Prog. Mater Sci., 2015, 74, p 211–307Google Scholar
  2. 2.
    J. Xu, U. Ramamurty, and E. Ma, The Fracture Toughness of Bulk Metallic Glasses, JOM-US, 2010, 62, p 10–18Google Scholar
  3. 3.
    L.A. Davis and S. Kavesh, Deformation and Fracture of An Amorphous Metallic Alloy at High Pressure, J. Mater. Sci., 1975, 10, p 453–459Google Scholar
  4. 4.
    D.G. Ast and D. Krenitsky, Fracture Toughness and Yield Strength of Annealed Ni–Fe Base Metallic Glasses, Mater. Sci. Eng., 1976, 23, p 241–246Google Scholar
  5. 5.
    W. Chen, H.F. Zhou, Z. Liu, J. Ketkaewet, and J. Schroersal, Test Sample Geometry for Fracture Toughness Measurements of Bulk Metallic Glasses, Acta Mater., 2018, 145, p 477–487Google Scholar
  6. 6.
    B. Gludovatz, D. Granata, K.V.S. Thurston, J.F. Löffler, and R.O. Ritchieet, On the Understanding of the Effects of Sample Size on the Variability in Fracture Toughness of Bulk Metallic Glasses, Acta. Mater., 2017, 126, p 494–506Google Scholar
  7. 7.
    B. Gludovatz, S.E. Naleway, R.O. Ritchie, and J.J. Kruzic, Size-Dependent Fracture Toughness of Bulk Metallic Glasses, Acta Mater., 2014, 70, p 198–207Google Scholar
  8. 8.
    D. Raut, R.L. Narayan, P. Tandaiya, and U. Ramamurty, Temperature-Dependence of Mode I, Fracture Toughness of A Bulk Metallic Glass, Acta Mater., 2018, 144, p 325–336Google Scholar
  9. 9.
    C. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical Behavior of Amorphous Alloys, Acta Mater., 2007, 55, p 4067–4109Google Scholar
  10. 10.
    H.A. Hassan, L. Kecskes, and J.J. Lewandowski, Effects of Changes in Test Temperature and Loading Conditions on Fracture Toughness of a Zr-Based Bulk Metallic Glass, Metall. Mater. Trans. A, 2008, 39, p 2077–2085Google Scholar
  11. 11.
    D.L. Henann and L. Anand, Fracture of Metallic Glasses at Notches: Effects of Notch-Root Radius and the Ratio of the Elastic Shear Modulus to the Bulk Modulus on Toughness, Acta Mater., 2009, 57, p 6057–7604Google Scholar
  12. 12.
    S. Xie and J.J. Kruzic, Cold Rolling Improves the Fracture Toughness of a Zr-Based Bulk Metallic Glass, J. Alloys Compd., 2017, 694, p 1109–1120Google Scholar
  13. 13.
    M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, and R.O. Ritchie, A Damage-Tolerant Glass, Nat. Mater., 2011, 10, p 123–128Google Scholar
  14. 14.
    J. Xu and E. Ma, Damage-Tolerant Zr-Cu-Al-Based Bulk Metallic Glasses with Record-Breaking Fracture Toughness, J. Mater. Res., 2014, 29, p 1489–1499Google Scholar
  15. 15.
    Q. He, Y.Q. Cheng, E. Ma, and J. Xu, Locating Bulk Metallic Glasses with High Fracture Toughness: Chemical Effects and Composition Optimization, Acta Mater., 2011, 59, p 202–215Google Scholar
  16. 16.
    Q. He, J.K. Shang, E. Ma, and J. Xu, Crack-Resistance Curve of a Zr-Ti-Cu-Al Bulk Metallic Glass with Extraordinary Fracture Toughness, Acta Mater., 2012, 60, p 4940–4949Google Scholar
  17. 17.
    W. Chen, Z. Liu, J. Ketkaew, R.M.O. Mota, S.H. Kim, M. Power, W. Samela, and J. Schroers, Flaw Tolerance of Metallic Glasses, Acta Mater., 2016, 107, p 220–228Google Scholar
  18. 18.
    W. Chen, H. Zhou, Z. Liu, J. Ketkaew, N. Li, J. Yurko, N. Hutchinson, H. Gao, and J. Schroers, Processing Effects on Fracture Toughness of Metallic Glasses, Scripta Mater., 2017, 130, p 152–156Google Scholar
  19. 19.
    P. Tandaiya, R. Narasimhan, and U. Ramamurty, On the Mechanism and the Length Scales Involved in the Ductile Fracture of a Bulk Metallic Glass, Acta Mater., 2013, 61, p 1558–1570Google Scholar
  20. 20.
    J. Gu, T.W. Zhang, Z.M. Jiao, Z.Y. Wang, Z.H. Wang, W. Ma, and J.W. Qiao, Improvement of Dynamic Notch Toughness for the Zr56Co28Al16 Bulk Metallic Glass by Local Pre-Deformation, J. Non-Cryst. Solids., 2017, 473C, p 96–101Google Scholar
  21. 21.
    Y. Zhou, J. Liu, D. Han, X. Chen, G. Wang, and Q. Zhai, Reduced Fracture Toughness of Metallic Glass at Cryogenic Temperature, Metals, 2017, 7, p 151Google Scholar
  22. 22.
    J. Ketkaew, W. Chen, H. Wang, and A. Datye, Mechanical Glass Transition Revealed by the Fracture Toughness of Metallic Glasses, Nat. Commun., 2018, 9, p 3271–3277Google Scholar
  23. 23.
    J. Schroers and W.L. Johnson, Ductile Bulk Metallic Glass, Phys. Rev. Lett., 2004, 93, p 255506Google Scholar
  24. 24.
    X.J. Gu, S.J. Poon, G.J. Shiflet, and J.J. Lewandowski, Compressive Plasticity and Toughness of a Ti-Based Bulk Metallic Glass, Acta Mater., 2010, 58, p 1708–1720Google Scholar
  25. 25.
    R.L. Narayan, P. Tandaiya, G.R. Garrett, M.D. Demetriouet, and U. Ramamurty, On the Variability in Fracture Toughness of ‘Ductile’ Bulk Metallic Glasses, Scripta Mater., 2015, 102, p 75–78Google Scholar
  26. 26.
    Z.Q. Song, E. Ma, and J. Xu, Mode III, Fracture Toughness of the Zr61Ti2Cu25Al12 Bulk Metallic Glass, Acta Mater., 2016, 109, p 275–285Google Scholar
  27. 27.
    R. Varadarajan, A.K. Thurston, and J.J. Lewandowski, Increased Toughness of Zirconium-Based Bulk Metallic Glasses Tested Under Mixed Mode Conditions, Metall. Mater. Trans. A, 2010, 41, p 149–158Google Scholar
  28. 28.
    R.D. Cornner, A.J. Rosakis, W.L. Johnson, and D.M. Owen, Fracture Toughness Determination for a Beryllium-Bearing Bulk Metallic Glass, Scripta Mater., 1997, 37, p 1373–1378Google Scholar
  29. 29.
    F. Jiang, R. Liu, X. Zhang, K.S. Vecchio, and A. Rohatgi, Evaluation of Dynamic Fracture Toughness by Hopkinson Pressure Bar Loaded Instrumented Charpy Impact Test, Eng. Fract. Mech., 2004, 71, p 279–287Google Scholar
  30. 30.
    C.J. Gilbert, V. Schroeder, and R.O. Ritchie, Mechanisms for Fracture and Fatigue-Crack Propagation in a Bulk Metallic Glass, Metall. Mater. Trans. A, 1999, 30, p 1739–1753Google Scholar
  31. 31.
    G. Sunny, V. Prakash, and J.J. Lewandowski, Dynamic Fracture of a Zr-Based Bulk Metallic Glass, Metall. Mater. Trans. A, 2013, 44, p 4644–4653Google Scholar
  32. 32.
    R. Narasimhan, P. Tandaiya, I. Singh, R.L. Narayan, and U. Ramamurty, Fracture in Metallic Glasses: Mechanics and Mechanisms, Int. J. Fracture, 2015, 191, p 53–75Google Scholar
  33. 33.
    P. Tandaiya, U. Ramamurty, and R. Narasimhan, Mixed Mode (I, and II) Crack Tip Fields in Bulk Metallic Glasses, J. Mech. Phys. Solids, 2009, 57, p 1880–1897Google Scholar
  34. 34.
    A.L. Greer, Y.Q. Cheng, and E. Ma, Shear Bands in Metallic Glasses, Mat. Sci. Eng. R, 2013, 74, p 71–132Google Scholar
  35. 35.
    C.A. Schuh and A.C. Lund, Atomistic Basis for the Plastic Yield Criterion of Metallic Glass, Nat. Mater., 2003, 2, p 449–452Google Scholar
  36. 36.
    Q.K. Li and M. Li, Atomic Scale Characterization of Shear Bands in an Amorphous Metal, Appl. Phys. Lett., 2006, 88, p 1194Google Scholar
  37. 37.
    F. Delogu, Identification and Characterization of Potential Shear Transformation Zones in Metallic Glasses, Phys. Rev. Lett., 2008, 100, p 255901Google Scholar
  38. 38.
    C.T. Liu, L. Heatherly, J.A. Horton, D.S. Easton, C.A. Carmichael, J.L. Wright, J.H. Schneibel, M.H. Yoo, C.H. Chen, and A. Inoue, Test Environments and Mechanical Properties of Zr-Base Bulk Amorphous Alloys, Metall. Mater. Trans. A, 1998, 29, p 1811–1820Google Scholar
  39. 39.
    F. Spaepen, A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses, Acta Metall., 1977, 25, p 407–415Google Scholar
  40. 40.
    R.L. Narayan, D. Raut, and U. Ramamurty, A Quantitative Connection Between Shear Band Mediated Plasticity and Fracture Initiation Toughness of Metallic Glasses, Acta Mater., 2018, 150, p 69–77Google Scholar
  41. 41.
    J. Yi, W.H. Wang, and J.J. Lewandowski, Guiding and Deflecting Cracks in Bulk Metallic Glasses to Increase Damage Tolerance, Adv. Eng. Mater., 2015, 17, p 620–625Google Scholar
  42. 42.
    M.Y. Chu, Z.M. Jiao, R.F. Wu, Z.H. Wang, Y.S. Wang, and J.W. Qiao, Quasi-Static and Dynamic Deformation Behaviors of an In-Situ Ti-Based Metallic Glass Matrix Composite, J. Alloy. Compd., 2015, 640, p 305–310Google Scholar
  43. 43.
    Y. Yokoyama, H. Tokunaga, A.R. Yavari, T. Kawamata, T. Yamasaki, K. Fujita, K. Sugiyama, P.K. Liaw, and A. Inoue, Tough Hypoeutectic Zr-Based Bulk Metallic Glasses, Metall. Mater. Trans., 2011, 42, p 1468–1475Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Institute of Applied MechanicsTaiyuan University of TechnologyTaiyuanChina
  2. 2.College of Mechanical and Vehicle EngineeringTaiyuan University of TechnologyTaiyuanChina
  3. 3.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations