Advertisement

Microstructural Development and Mechanical Properties of Friction Stir Welded Ferritic Stainless Steel AISI 409

  • M. M. Z. Ahmed
  • Mohamed M. El-Sayed SelemanEmail author
  • Mostafa Shazly
  • Moataz M. Attallah
  • Essam Ahmed
Article

Abstract

This work investigates the effect of friction stir welding process parameters (rotation rate and traverse speed) on the microstructural evolution of friction stir welded (FSWed) ferritic stainless steel (FSS) AISI 409. Optical microscope, scanning electron microscope and electron backscattering diffraction are used to quantitatively assess the development in grain structure and texture. The microstructural development suggested that thermo-mechanical deformation occurs in the stir zone within the austenite/ferrite phase region, ultimately transforming upon cooling into bainitic/ferritic microstructure. The fraction and size of the bainitic/ferritic grains are found to vary through the thickness of the joints. High fractions of coarse ferritic grains are found near the top of the stir zone, and low fraction of fine ferritic grains is found near the bottom of the stir zone. This bainitic/ferritic grain structure resulted in an increase in the hardness of the stir zone by about 74% relative to the base material. The tensile strength of the FSWed FSS joints is almost at the same level of the base material with reduction in the ductility as a result of the increased hardness of the weld zone.

Keywords

EBSD ferritic stainless steel friction stir welding microstructure mechanical properties 

Notes

References

  1. 1.
    J. Charles, J.-D. Mithieux, P.O. Santacreu, and L. Peguet, The Ferritic Stainless Family: The Appropriate Answer to Nickel Volatility?, Rev. Métallurgie, 2009, 106, p 124–139CrossRefGoogle Scholar
  2. 2.
    G. Sharma and D.K. Dwivedi, Study on Microstructure and Mechanical Properties of Dissimilar Steel Joint Developed Using Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2017, 88, p 1299–1307CrossRefGoogle Scholar
  3. 3.
    M. Mondal, H. Das, E.Y. Ahn, S.T. Hong, M.-J. Kim, H.N. Han, and T.K. Pal, Characterization of Friction Stir Welded Joint of Low Nickel Austenitic Stainless Steel and Modified Ferritic Stainless Steel, Met. Mater. Int., 2017, 23(5), p 948–957CrossRefGoogle Scholar
  4. 4.
    J.-H. Schmitt, Some Examples of Stainless Steel Use in the Automotive Industry, Key Eng. Mater., 2002, 230-232, p 17–22CrossRefGoogle Scholar
  5. 5.
    J.C. Villafuerte and H.W. Kerr, Grain Structures in Gas Tungsten-Arc Welds of Austenitic Stainless Steels with Ferrite Primary Phase, Metall. Trans. A, 1990, 21, p 979–986CrossRefGoogle Scholar
  6. 6.
    X. Lei, Y. Deng, Y. Peng, Z. Yin, and G. Xu, Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy, J. Mater. Eng. Perform., 2013, 22(9), p 723–2729CrossRefGoogle Scholar
  7. 7.
    M.M.Z. Ahmed, B.P. Wynne, and J.P. Martin, Effect of Friction Stir Welding Speed on Mechanical Properties and Microstructure of Nickel Based Super Alloy Inconel 718, Sci. Technol. Weld. Join., 2013, 18(8), p 680CrossRefGoogle Scholar
  8. 8.
    ARSh Essa, M.M.Z. Ahmed, A.Y.A. Mohamed, and A.E. El-Nikhaily, An Analytical Model of Heat Generation for Eccentric Cylindrical Pin in Friction Stir Welding, J. Mater. Res. Technol., 2016, 5(3), p 234–240CrossRefGoogle Scholar
  9. 9.
    S. Khodir, M.M.Z. Ahmed, S. Mohamed, E. Ahmed, and H. Abdelaleem, Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints, J. Mater. Eng. Perform., 2016, 25(11), p 4637–4648CrossRefGoogle Scholar
  10. 10.
    F.C. Liu and T.W. Nelson, In-situ Grain Structure and Texture Evolution During Friction Stir Welding of Austenite Stainless Steel, Mater. Des., 2017, 115, p 467–478CrossRefGoogle Scholar
  11. 11.
    M.M.Z. Ahmed, B.P. Wynne, M.M. Seleman, and W.M. Rainforth, A Comparison of Crystallographic Texture and Grain Structure Development in Aluminum Generated by Friction Stir Welding and High Strain Torsion, Mater. Des., 2016, 103, p 259–267CrossRefGoogle Scholar
  12. 12.
    G.K. Padhy, C.S. Wu, and S. Gao, Friction Stir Based Welding and Processing Technologies—Processes, Parameters, Microstructures and Applications: A Review, J. Mater. Sci. Technol., 2018, 34(1), p 1–38CrossRefGoogle Scholar
  13. 13.
    F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A Review of Friction Stir Welding of Steels: Tool, Material Flow, Microstructure, and Properties, J. Mater. Sci. Technol., 2018, 34(1), p 39–57CrossRefGoogle Scholar
  14. 14.
    A.S. Hamada, A. Järvenpää, M.M.Z. Ahmed, M. Jaskari, B.P. Wynne, D.A. Porter, and L.P. Karjalainen, Microstructural Evolution of Friction-Stir-Welded AA6082-T6 Aluminum Alloy during Cyclic Deformation, Mater. Sci. Eng. A, 2015, 642, p 366–376CrossRefGoogle Scholar
  15. 15.
    A. Barbini, J. Carstensen, and J.F. dos Santos, Influence of a Non-rotating Shoulder on Heat Generation, Microstructure and Mechanical Properties of Dissimilar AA2024/AA7050 FSW Joints, J. Mater. Sci. Technol., 2018, 34(1), p 119–127CrossRefGoogle Scholar
  16. 16.
    W. Han, P. Liu, X. Yi, Q. Zhan, F. Wan, K. Yabuuchi, H. Serizawa, and A. Kimura, Impact of Friction Stir Welding on Recrystallization of Oxide Dispersion Strengthened Ferritic Steel, J. Mater. Sci. Technol., 2018, 34(1), p 209–213CrossRefGoogle Scholar
  17. 17.
    G. Chena, Q. Ma, S. Zhanga, J. Wua, G. Zhanga, and Q. Shi, Computational Fluid Dynamics Simulation of Friction Stir Welding: A Comparative Study on Different Frictional Boundary Conditions, J. Mater. Sci. Technol., 2018, 34(1), p 128–134CrossRefGoogle Scholar
  18. 18.
    S.S. Kumar, N. Murugan, and K.K. Ramachandran, Microstructure and Mechanical Properties of Friction Stir Welded AISI, 316L Austenitic Stainless Steel Joints, J. Mater. Process. Technol., 2018, 254, p 79–90CrossRefGoogle Scholar
  19. 19.
    H. Li, S. Yang, S. Zhang, B. Zhang, Z. Jiang, H. Feng, P. Han, and J. Li, Microstructure Evolution and Mechanical Properties of Friction Stir Welding Super-Austenitic Stainless Steel S32654, Mater. Des., 2017, 118, p 207–217CrossRefGoogle Scholar
  20. 20.
    Y.-G. Miao, G.-Y. Chen, P. Zhang, and D.-F. Han, Comparative Study of Bypass-Current MIG Welded-Brazed Aluminum/Galvanized Steel and Aluminum/Stainless Steel, Acta Metall. Sin. (Engl. Lett.), 2017, 30(8), p 721–730CrossRefGoogle Scholar
  21. 21.
    X. Liu, H. Liu, T. Wang, X. Wang, and S. Yang, Correlation Between Microstructures and Mechanical Properties of High-Speed Friction Stir Welded Aluminum Hollow Extrusions Subjected to Axial Forces, J. Mater. Sci. Technol., 2018, 34(1), p 102–111CrossRefGoogle Scholar
  22. 22.
    M.M.Z. Ahmed, S. Ataya, M.M. El-Sayed Seleman, H.R. Ammar, and E. Ahmed, Friction Stir Welding of Similar and Dissimilar AA7075 and AA5083, J. Mater. Process. Technol., 2017, 242, p 77–91CrossRefGoogle Scholar
  23. 23.
    H.-H. Cho, H.N. Han, S.-T. Hong, J.-H. Park, Y.-J. Kwon, S.-H. Kim, and R.J. Steel, Microstructural Analysis of Friction Stir Welded Ferritic Stainless Steel, Mater. Sci. Eng. A, 2011, 528(6), p 2889–2894CrossRefGoogle Scholar
  24. 24.
    M.B. Bilgin, C. Meran, and O.E. Canyurt, Effect of Tool Angle on Friction Stir Weldability of AISI, 430, Weld. J., 2013, 92, p 42–46Google Scholar
  25. 25.
    W.M. Thomas, C.S. Wiesner, D.J. Marks, and D.G. Staines, Conventional and Bobbin Friction Stir Welding of 12% Chromium Alloy Steel Using Composite Refractory Tool Materials, Sci. Technol. Weld. Join., 2009, 14(3), p 247–253CrossRefGoogle Scholar
  26. 26.
    A.K. Lakshminarayanan and V. Balasubramanian, Understanding the Parameters Controlling Friction Stir Welding of AISI, 409M Ferritic Stainless Steel, Met. Mater. Int., 2011, 17(6), p 969–981CrossRefGoogle Scholar
  27. 27.
    A.K. Lakshminarayanan and V. Balasubramanian, Assessment of Fatigue Life and Crack Growth Resistance of Friction Stir Welded AISI, 409M Ferritic Stainless Steel Joints, Mater. Sci. Eng. A, 2012, 539, p 143–153CrossRefGoogle Scholar
  28. 28.
    A. Salemi Golezani, S.M. Arab, S. Javadi, and F. Kargar, The Effect of Friction Stir Processing Speed Ratio on the Microstructure and Mechanical Properties of A 430 Ferritic Stainless Steel, J. Adv. Mater. Process., 2014, 2(2), p 39–48Google Scholar
  29. 29.
    J. Han, H. Li, Z. Zhu, F. Barbaro, L. Jiang, H. Xu, and L. Ma, Microstructure and Mechanical Properties of Friction Stir Welded 18Cr–2Mo Ferritic Stainless Steel Thick Plate, Mater. Des., 2014, 63, p 238–246CrossRefGoogle Scholar
  30. 30.
    M.B. Bilgin and C. Meran, The Effect of Tool Rotational and Traverse Speed on Friction Stir Weldability of AISI, 430 Ferritic Stainless Steels, Mater. Des., 2012, 33, p 376–383CrossRefGoogle Scholar
  31. 31.
    M.M.Z. Ahmed, E. Ahmed, A.S. Hamada, S.A. Khodir, M.M. El-Sayed Selema, and B.P. Wynne, Microstructure and Mechanical Properties Evolution of Friction Stir Spot Welded High-Mn Twinning-Induced Plasticity Steel, Mater. Des., 2016, 91, p 378–387CrossRefGoogle Scholar
  32. 32.
    H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, Oxford, 2006Google Scholar
  33. 33.
    S. Rahimi, B.P. Wynne, and T.N. Baker, Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel, Metall. Mater. Trans. A, 2017, 48, p 362–378CrossRefGoogle Scholar
  34. 34.
    D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma, W. Wang, and K. Yang, Microstructural Evolution and Mechanical Properties of Friction Stir Welded Joint of Fe-Cr-Mn-Mo-N Austenite Stainless Steel, Mater. Des., 2014, 64, p 355–359CrossRefGoogle Scholar
  35. 35.
    H.B. Li, Z.H. Jiang, H. Feng, S.C. Zhang, L. Li, P.D. Han, R.D.K. Misra, and J.Z. Li, Microstructure, Mechanical and Corrosion Properties of Friction Stir Welded High Nitrogen Nickel-Free Austenitic Stainless Steel, Mater. Des., 2016, 84, p 291–299CrossRefGoogle Scholar
  36. 36.
    J.J. Jeon, S. Mironov, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Grain Structure Development During Friction Stir Welding of Single-Crystal Austenitic Stainless Steel, Metall. Mater. Trans. A, 2013, 44(7), p 3157–3166CrossRefGoogle Scholar
  37. 37.
    M. Mahmoudiniya, A.H. Kokabi, S. Kheirandish, and L.A.I. Kestens, Microstructure and Mechanical Properties of Friction Stir Welded Ferrite Martensite DP700 Steel, Mater. Sci. Eng., A, 2018, 737, p 213–222CrossRefGoogle Scholar
  38. 38.
    A.K. Lakshminarayanan and V. Balasubramanian, An Assessment of Microstructure, Hardness, Tensile and Impact Strength of Friction Stir Welded Ferritic Stainless Steel Joints, Mater. Des., 2010, 31(10), p 4592–4600CrossRefGoogle Scholar
  39. 39.
    M.M.Z. Ahmed, B.P. Wynne, W.M. Rainforth, A. Addison, J.P. Martin, and P.L. Threadgill, Effect of Tool Geometry and Heat Input on the Hardness, Grain Structure, and Crystallographic Texture of Thick-Section Friction Stir-Welded Aluminium, Metall. Mater. Trans. A, 2019, 50A, p 271–284CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • M. M. Z. Ahmed
    • 1
    • 2
    • 3
  • Mohamed M. El-Sayed Seleman
    • 2
    • 3
    Email author
  • Mostafa Shazly
    • 1
  • Moataz M. Attallah
    • 4
  • Essam Ahmed
    • 2
    • 3
  1. 1.Mechanical Engineering DepartmentThe British University in EgyptAl-SheroukEgypt
  2. 2.Suez and Sinai Metallurgical and Materials Research Center of Scientific Excellence (SSMMR-CSE)Suez UniversitySuezEgypt
  3. 3.Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining EngineeringSuez UniversitySuezEgypt
  4. 4.School of Metallurgy and MaterialsUniversity of BirminghamEdgbaston, BirminghamUK

Personalised recommendations