Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 10, pp 6165–6173 | Cite as

Beam Current Effect on Microstructure and Properties of Electron-Beam-Melted Ti-6Al-4V Alloy

  • N. S. Pushilina
  • V. A. Klimenov
  • R. O. Cherepanov
  • E. B. KashkarovEmail author
  • V. V. Fedorov
  • M. S. Syrtanov
  • A. M. Lider
  • R. S. Laptev
Article
  • 92 Downloads

Abstract

In this study, a noncommercial 3D printing machine was used to fabricate Ti-6Al-4V alloy by electron-beam melting (EBM). The influence of beam current on the microstructure, phase composition and mechanical properties of electron-beam-melted Ti-6Al-4V alloy was investigated. Numerical simulation is implemented to evaluate thermal fields during electron-beam melting of Ti-6Al-4V powder. The decrease in beam current from 3.5 to 2.5 mA leads to refinement of microstructure: The average width of α plates decreases from 10 down to 6 μm. The formation of finer microstructure is attributed to higher cooling rate at lower beam current confirmed by simulation. The phase composition of EBM Ti-6Al-4V indirectly depends on the beam current. High content of β phase (7%) was achieved at the beam current of 3 mA. The produced Ti-6Al-4V samples are characterized by high microhardness (470-520 HV).

Keywords

additive manufacturing electron-beam melting microhardness microstructure simulation models Ti-6Al-4V titanium alloy 

Notes

Acknowledgments

The research was funded by the Russian Science Foundation within Grant No. 17-79-20100. Dr. Klimenov, Dr. Cherepanov and Dr. Lider also acknowledge Tomsk Polytechnic University Competitiveness Enhancement Program for the support in theoretical simulation.

References

  1. 1.
    E.W. Collings, R. Boyer, and G. Welsch, Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, 2007Google Scholar
  2. 2.
    E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, and A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP, 2015, 35, p 55–60CrossRefGoogle Scholar
  3. 3.
    B.B. Straumal, A.R. Kilmametov, Yu Ivanisenko, A.A. Mazilkin, R.Z. Valiev, N.S. Afonikova, A.S. Gornakova, and H. Hahn, Diffusive and Displacive Phase Transitions in Ti-Fe and Ti-Co Alloys Under High Pressure Torsion, J. Alloys Compd., 2018, 735, p 2281–2286CrossRefGoogle Scholar
  4. 4.
    S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting, Metall. Mater. Trans. A, 2016, 47(5), p 1939–1946CrossRefGoogle Scholar
  5. 5.
    U. Ackelid and M. Svensson, Additive manufacturing of dense metal parts by electron beam melting, in Proceedings of the Materials Science and Technology Conference, Pittsburgh, USA, vol. 2529 (2009)Google Scholar
  6. 6.
    L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V, Mater. Charact., 2009, 60, p 96–105CrossRefGoogle Scholar
  7. 7.
    H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of the Microstructure and Porosity on Properties of Ti-6Al-4VELI, Alloy Fabricated by Electron Beam Melting (EBM), Addit. Manuf., 2016, 10, p 47–57CrossRefGoogle Scholar
  8. 8.
    S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, The Origin of Microstructural diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V, Metall. Mater. Trans. A, 2010, 41, p 3422–3434CrossRefGoogle Scholar
  9. 9.
    W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928CrossRefGoogle Scholar
  10. 10.
    C. Wei, X. Ma, X. Yang, M. Zhou, C. Wang, Y. Zheng, W. Zhang, and Z. Li, Microstructural and Property Evolution of Ti6Al4 V Powders with the Number of Usage in Additive Manufacturing by Electron Beam Melting, Mater. Lett., 2018, 221, p 111–114CrossRefGoogle Scholar
  11. 11.
    W. Everhart, J. Dinardo, and C. Barr, The Effect of Scan Length on the Structure and Mechanical Properties of Electron Beam-Melted Ti-6Al-4V, Metall. Mater. Trans. A, 2017, 48(2), p 697–705CrossRefGoogle Scholar
  12. 12.
    N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, and J. Blackburn, Progress in Additive Manufacturing on New Materials: A Review, J. Mater. Sci. Technol., 2019, 35(2), p 242–269CrossRefGoogle Scholar
  13. 13.
    L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science, Mater. J. Sci. Technol., 2012, 1(1), p 42–54Google Scholar
  14. 14.
    R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, and A.D. Rollett, Analyzing the Effects of Powder and Post-Processing on Porosity and Properties of Electron Beam Melted Ti-6Al-4V, Mater. Res. Lett., 2017, 5(7), p 516–525CrossRefGoogle Scholar
  15. 15.
    L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303–3312CrossRefGoogle Scholar
  16. 16.
    W.A. Grell, E. Solis-Ramos, E. Clark, E. Lucon, E.J. Garboczi, P.K. Predecki, Z. Loftus, and M. Kumos, Effect of Powder Oxidation on the Impact Toughness of Electron Beam Melting Ti-6Al-4V, Addit. Manuf., 2017, 17, p 123–134CrossRefGoogle Scholar
  17. 17.
    X. Wang, X. Gong, and K. Chou, Scanning Speed Effect on Mechanical Properties of Ti-6Al-4V Alloy Processed by Electron Beam Additive Manufacturing, Procedia Manuf., 2015, 1, p 287–295CrossRefGoogle Scholar
  18. 18.
    C. Guo, W. Ge, and F. Lin, Effects of Scanning Parameters on Material Deposition During Electron Beam Selective Melting of Ti-6Al-4V Powder, J. Mater. Process. Technol., 2015, 217, p 148–157CrossRefGoogle Scholar
  19. 19.
    S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, and P.B. Prangnell, XCT Analysis of the Influence of Melt Strategies on Defect Population in Ti-6Al-4V Components Manufactured by Selective Electron Beam Melting, Mater. Charact., 2015, 102, p 47–61CrossRefGoogle Scholar
  20. 20.
    H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, and E.B. Stucker, Microstructures and Mechanical Properties of Ti6Al4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, JMEPEG, 2013, 22, p 3872–3883CrossRefGoogle Scholar
  21. 21.
    X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, and R.B. Wicker, Compression Deformation Behavior of Ti-6Al-4V Alloy with Cellular Structures Fabricated by Electron Beam Melting, J. Mech. Behav. Biomed. Mater., 2012, 16, p 153–162CrossRefGoogle Scholar
  22. 22.
    J. Bruno, A. Rochman, and G. Cassar, Effect of Build Orientation of Electron Beam Melting on Microstructure and Mechanical Properties of Ti-6Al-4V, J. Mater. Eng. Perform., 2017, 26(2), p 692–703CrossRefGoogle Scholar
  23. 23.
    M. Galati and L. Luliano, A Literature Review of Powder-Based Electron Beam Melting Focusing on Numerical Simulations, Addit. Manuf., 2018, 19, p 1–20CrossRefGoogle Scholar
  24. 24.
    R. Hu, X. Chen, G. Yang, S. Gong, and S. Pang, Metal Transfer in Wire Feeding-Based Electron Beam 3D Printing: Modes, Dynamics, and Transition Criterion, Int. J. Heat Mass Transf., 2018, 126, p 877–887CrossRefGoogle Scholar
  25. 25.
    M.F. Zah and S. Lutzmann, Modelling and Simulation of Electron Beam Melting, Prod. Eng. Res. Dev., 2010, 4, p 15–23CrossRefGoogle Scholar
  26. 26.
    R.O. Cherepanov and A.V. Gerasimov, Numerical Modelling of Heat Transfer During Impact of a Molten Droplet on a Surface, MATEC Web Conf., 2016, 72, p 1–4CrossRefGoogle Scholar
  27. 27.
    X. Tan, Y. Kok, Y.J. Tan, M. Descoins, M. Dominique, S.B. Tor, K.F. Leong, and C.K. Chua, Graded Microstructure and Mechanical Properties of Additive Manufactured Ti-6Al-4V Via Electron Beam Melting, Acta Mater., 2015, 97, p 1–16CrossRefGoogle Scholar
  28. 28.
    N. Pushilina, M. Syrtanov, E. Kashkarov, T. Murashkina, V. Kudiiarov, R. Laptev, A. Lider, and A. Koptyug, Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V, Materials, 2018, 11(5), p 763CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • N. S. Pushilina
    • 1
  • V. A. Klimenov
    • 1
  • R. O. Cherepanov
    • 1
  • E. B. Kashkarov
    • 1
    Email author
  • V. V. Fedorov
    • 1
  • M. S. Syrtanov
    • 1
  • A. M. Lider
    • 1
  • R. S. Laptev
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussian Federation

Personalised recommendations