Advertisement

Comparative Corrosion Behavior of Five Different Microstructures of Rebar Steels in Simulated Concrete Pore Solution with and Without Chloride Addition

  • Prvan Kumar Katiyar
  • Prasanna Kumar Behera
  • S. Misra
  • K. MondalEmail author
Article
  • 27 Downloads

Abstract

The present work discusses the effect of five different microstructures, coarse, fine and very fine ferrite–pearlite, martensite and tempered martensite, made by furnace cooling, air cooling, forced air-cooling, water quenching and tempering, respectively, of a rebar steel on its corrosion performance in freely aerated with and without chloride-contaminated simulated concrete pore solution using the dynamic polarization and electrochemical impedance spectroscopy. The corrosion performance of the steels with five different microstructures relates to the polarization resistance, protective ability of rusts and the extent of the galvanic attack. The corrosion rate of the steels has been found to be comparable in the simulated concrete pore (SCP) solution. However, in chloride-containing SCP solution, corrosion rate has been found to increase in the following sequence: forced air-cooled–air-cooled–quenched–furnace-cooled–tempered steels.

Keywords

corrosion heat treatment rust simulated pore solution steel 

Notes

References

  1. 1.
    F. Lollini, M. Carsana, M. Gastaldi, and E. Redaelli, Corrosion Behaviour of Stainless Steel Reinforcement in Concrete, Corros. Rev., 2018, 1, p 1–16Google Scholar
  2. 2.
    O. Girčiene, M. Samulevičiene, V. Burokas, and R. Ramanauskas, Corrosion Behaviour of Phosphated Reinforcing Steel in Alkaline Media Contaminated with Chloride Ions, Chemija, 2008, 19, p 14–19Google Scholar
  3. 3.
    R.R. Hussain, J.K. Singh, A. Alhozaimy, A. Al-Negheimish, C. Bhattacharya, R.S. Pathania, and D.D.N. Singh, Effect of Reinforcing Bar Microstructure on Passive Film Exposed to Simulated Concrete Pore Solution, ACI, Mater. J., 2018, 115, p 181–190Google Scholar
  4. 4.
    S. Ahmad, Reinforcement Corrosion in Concrete Structures, Its Monitoring and Service Life Prediction—A Review, Cem. Concr. Compos., 2003, 25, p 459–471CrossRefGoogle Scholar
  5. 5.
    K. Asami and M. Kikuchi, In-Depth Distribution of Rusts on a Plain Carbon Steel and Weathering Steels Exposed to Coastal–Industrial Atmosphere for 17 Years, Corros. Sci., 2003, 45, p 2671–2688CrossRefGoogle Scholar
  6. 6.
    Q.C. Zhang, J.S. Wu, J.J. Wang, W.L. Zheng, J.G. Chen, and A.B. Li, Corrosion Behavior of Weathering Steel in Marine Atmosphere, Mater. Chem. Phys., 2002, 77, p 603–608CrossRefGoogle Scholar
  7. 7.
    J.H. Wang, F.I. Wei, Y.S. Chang, and H.C. Shih, The Corrosion Mechanisms of Carbon Steel and Weathering Steel in SO2 Polluted Atmospheres, Mater. Chem. Phys., 1997, 47, p 1–8CrossRefGoogle Scholar
  8. 8.
    S.K. Nandi, N.K. Tewary, J.K. Saha, and S.K. Ghosh, Microstructure, Mechanical Properties and Corrosion Performance of a Few TMT Rebars, Corros. Eng. Sci. Technol., 2016, 51, p 476–488CrossRefGoogle Scholar
  9. 9.
    Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung, and H.C. Shih, Corrosion Resistance and Mechanical Properties of Low-Alloy Steels Under Atmospheric Conditions, Corros. Sci., 2005, 47, p 1001–1021CrossRefGoogle Scholar
  10. 10.
    Q. Xu, K. Gao, W. Lv, and X. Pang, Effects of Alloyed Cr and Cu on the Corrosion Behavior of Low-Alloy Steel in a Simulated Groundwater Solution, Corros. Sci., 2016, 102, p 114–124CrossRefGoogle Scholar
  11. 11.
    J. Guo, C. Shang, S. Yang, H. Guo, X. Wang, and X. He, Weather Resistance of Low Carbon High Performance Bridge Steel, Mater. Des., 2009, 30, p 129–134CrossRefGoogle Scholar
  12. 12.
    J. Guo, S. Yang, C. Shang, Y. Wang, and X. He, Influence of Carbon Content and Microstructure on Corrosion Behaviour of Low Alloy Steels in a Cl-Containing Environment, Corros. Sci., 2008, 51, p 242–251CrossRefGoogle Scholar
  13. 13.
    D. Clover, B. Kinsella, B. Pejcic, and R. De Marco, The Influence of Microstructure on the Corrosion Rate of Various Carbon Steels, J. Appl. Electrochem., 2005, 35, p 139–149CrossRefGoogle Scholar
  14. 14.
    H.J. Cleary and N.D. Greene, Corrosion Properties of Iron and Steel, Corros. Sci., 1967, 7, p 821–831CrossRefGoogle Scholar
  15. 15.
    H.J. Cleary and N.D. Greene, Electrochemical Properties of Fe and Steel, Corros. Sci., 1969, 9, p 3–13CrossRefGoogle Scholar
  16. 16.
    M. Stern, The Effect of Alloying Elements in Iron on Hydrogen Over-Voltage and Corrosion Rate in Acid Environment, J. Electrochem. Soc., 1955, 102, p 663–668CrossRefGoogle Scholar
  17. 17.
    D.N. Staicopolous, The Role of Cementite in the Acidic Corrosion of Steel, J. Electroanal. Soc., 1963, 110, p 1121–1124CrossRefGoogle Scholar
  18. 18.
    X. Hao, J. Dong, I.I.N. Etim, J. Wei, and W. Ke, Sustained Effect of Remaining Cementite on the Corrosion Behavior of Ferrite-Pearlite Steel Under the Simulated Bottom Plate Environment of Cargo Oil Tank, Corros. Sci., 2016, 110, p 296–304CrossRefGoogle Scholar
  19. 19.
    J. Sánchez, J. Fullea, C. Andrade, J.J. Gaitero, and A. Porro, AFM Study of the Early Corrosion of a High Strength Steel in a Diluted Sodium Chloride Solution, Corros. Sci., 2008, 50, p 1820–1824CrossRefGoogle Scholar
  20. 20.
    W.J. Tomlinson and K. Giles, The Microstructures and Corrosion of a 0.79C Steel Tempered in the Range 100-700 °C, Corros. Sci., 1983, 23, p 1353–1359CrossRefGoogle Scholar
  21. 21.
    A.P. Moon, S. Sangal, S. Layek, S. Giribaskar, and K. Mondal, Corrosion Behavior of High-Strength Bainitic Rail Steels, Metall. Mater. Trans. A, 2015, 46, p 1500–1518CrossRefGoogle Scholar
  22. 22.
    S. Al-Hassan, B. Mishra, D.L. Olson, and M.M. Salama, Effect of Microstructure on Corrosion of Steels in Aqueous Solution Containing Carbon Dioxide, Corros. Eng. Sect., 1998, 54, p 480–491CrossRefGoogle Scholar
  23. 23.
    L.R. Bhagavathi, G.P. Chaudhari, and S.K. Nath, Mechanical and Corrosion Behavior of Plain Low Carbon Dual-Phase Steels, Mater. Des., 2011, 32, p 433–440CrossRefGoogle Scholar
  24. 24.
    O. Keleştemur and S. Yildiz, Effect of Various Dual-Phase Heat Treatments on the Corrosion Behavior of Reinforcing Steel Used in the Reinforced Concrete Structures, Constr. Build. Mater., 2009, 23, p 78–84CrossRefGoogle Scholar
  25. 25.
    O. Keleştemur, M. Aksoy, and S. Yildiz, Corrosion Behavior of Tempered Dual-Phase Steel Embedded in Concrete, Int. J. Miner. Metall. Mater., 2009, 16, p 43–50CrossRefGoogle Scholar
  26. 26.
    W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical Corrosion Response of a Low Carbon Heat Treated Steel in a NaCl Solution, Mater. Corros., 2009, 60, p 804–812CrossRefGoogle Scholar
  27. 27.
    V.C. Igwemezie and J.E.O. Ovri, Investigation into the Effects of Microstructure on the Corrosion Susceptibility of Medium Carbon Steel, Int. J. Eng. Sci., 2013, 2, p 11Google Scholar
  28. 28.
    R.R. Hussain, A. Alhozaimy, A. Al-Negheimish, and D.D.N. Singh, Time-Dependent Variation of the Electrochemical Impedance for Thermo-Mechanically Treated Versus Plain Low Alloy Steel Rebars in Contact with Simulated Concrete Pore Solution, Constr. Build. Mater., 2014, 73, p 283–288CrossRefGoogle Scholar
  29. 29.
    B. Li, Y. Huan, and W. Zhang, Passivation and Corrosion Behavior of P355 Carbon Steel in Simulated Concrete Pore Solution at pH 12.5 to 14, Int. J. Electrochem. Sci., 2017, 12, p 10402–10420CrossRefGoogle Scholar
  30. 30.
    J.K. Singh and D.D.N. Singh, The Nature of Rusts and Corrosion Characteristics of Low Alloy and Plain Carbon Steels in Three Kinds of Concrete Pore Solution with Salinity and Different pH, Corros. Sci., 2012, 56, p 129–142CrossRefGoogle Scholar
  31. 31.
    Y. Zhang and A. Poursaee, Passivation and Corrosion Behavior of Carbon Steel in Simulated Concrete Pore Solution Under Tensile and Compressive Stresses, J. Mater. Civ. Eng., 2015, 27, p 1–9Google Scholar
  32. 32.
    J. Shi, D. Ph, D. Wang, J. Ming, and W. Sun, Long-Term Electrochemical Behavior of Low-Alloy Steel in Simulated Concrete Pore Solution with Chlorides, J. Mater. Civ. Eng., 2018, 30, p 1–11Google Scholar
  33. 33.
    E. Zitrou, J. Nikolaou, P.E. Tsakiridis, and G.D. Papadimitriou, Atmospheric Corrosion of Steel Reinforcing Bars Produced by Various Manufacturing Processes, Constr. Build. Mater., 2007, 21, p 1161–1169CrossRefGoogle Scholar
  34. 34.
    D. Trejo, P. Monteiro, G. Thomas, and X. Wang, Mechanical Properties and Corrosion Susceptibility of Dual-Phase Steel in Concrete, Cem. Concr. Res., 1994, 24, p 1245–1254CrossRefGoogle Scholar
  35. 35.
    H.K.D.H. Bhadeshia, Materials Algorithms Project Program Library, Phase Transform. Group, Dep. Mater. Sci. Metall. Univ. Cambridge, Cambridge (2018) pp. 1–5. https://www.phasetrans.msm.cam.ac.uk/map/steel/programs/mucg46-b.html. Accessed 12 Feb 2019
  36. 36.
    P. Ghods, O.B. Isgor, G. McRae, and T. Miller, The Effect of Concrete Pore Solution Composition on the Quality of Passive Oxide Films on Black Steel Reinforcement, Cem. Concr. Compos., 2009, 31, p 2–11CrossRefGoogle Scholar
  37. 37.
    B.B. Hope et al., ACI 222R-01 Protection of Metals in Concrete Against Corrosion Reported by ACI Committee 222, 2010.Google Scholar
  38. 38.
    ASTM G102, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM Int., 2008, G102-89, p 1–7Google Scholar
  39. 39.
    A.F. Betancur, F.R. Pérez, M.M. Correa, and C.A. Barrero, Quantitative Approach in Iron Oxides and Oxihydroxides by Vibrational Analysis, Opt. Pura Apl., 2012, 45, p 269–275CrossRefGoogle Scholar
  40. 40.
    J. Aramendia, L. Gomez-Nubla, L. Bellot-Gurlet, K. Castro, C. Paris, P. Colomban, and J.M. Madariaga, Protective Ability Index Measurement Through Raman Quantification Imaging to Diagnose the Conservation State of Weathering Steel Structures, J. Raman Spectrosc., 2014, 45, p 1076–1084CrossRefGoogle Scholar
  41. 41.
    G.E. Totten, Steel Heat Treatment Handbook, Second Edi, CRC Press, Taylor & Francis Group, 2006Google Scholar
  42. 42.
    ASTM C 876, Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete, (1999) pp. 1–6.Google Scholar
  43. 43.
    C.Q. Ye, R.G. Hu, S.G. Dong, X.J. Zhang, R.Q. Hou, R.G. Du, C.J. Lin, and J.S. Pan, EIS Analysis on Chloride-Induced Corrosion Behavior of Reinforcement Steel in Simulated Carbonated Concrete Pore Solutions, J. Electroanal. Chem., 2013, 688, p 275–281CrossRefGoogle Scholar
  44. 44.
    J. Shi, W. Sun, J. Jiang, and Y. Zhang, Influence of Chloride Concentration and Pre-passivation on the Pitting Corrosion Resistance of Low-Alloy Reinforcing Steel in Simulated Concrete Pore Solution, Constr. Build. Mater., 2016, 111, p 805–813CrossRefGoogle Scholar
  45. 45.
    M. Liu, X. Cheng, X. Li, C. Zhou, and H. Tan, Effect of Carbonation on the Electrochemical Behavior of Corrosion Resistance Low Alloy Steel Rebars in Cement Extract Solution, Constr. Build. Mater., 2017, 130, p 193–201CrossRefGoogle Scholar
  46. 46.
    R. Balasubramaniam, A.V.R. Kumar, and P. Dillmann, Characterisation of Ancient Indian Iron, Curr. Sci., 2003, 85, p 1546–1555Google Scholar
  47. 47.
    M. Morcillo, R. Wolthuis, J. Alcántara, B. Chico, I. Díaz, and D. De La Fuente, SEM/Micro Raman, a Very Useful Technique for Characterizing the Morphologies of Rust Phases Formed on Carbon Steel in Atmospheric Exposures, Corrosion., 2016, 72, p 1044–1054Google Scholar
  48. 48.
    K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion, Corrosion., 2010, 66, p 1–4CrossRefGoogle Scholar
  49. 49.
    X.Y. Wang and D.Y. Li, Mechanical and Electrochemical Behavior of Nanocrystalline Surface of 304 Stainless Steel, Electrochim. Acta, 2002, 47, p 3939–3947CrossRefGoogle Scholar
  50. 50.
    P.K. Katiyar, P.K. Behera, S. Misra, and K. Mondal, Effect of Microstructures on the Corrosion Behavior of Reinforcing Bars (Rebar) Embedded in Concrete, Metals Mater. Int, 2019, 25, p 1209–1226.CrossRefGoogle Scholar
  51. 51.
    P.K. Katiyar, S. Misra, and K. Mondal, Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel, Metall. Mater. Trans. A, 2019, 50A, p 1489–1501CrossRefGoogle Scholar
  52. 52.
    P.K. Katiyar, S. Misra, and K. Mondal, Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel, J. Mater. Eng. Perform., 2018, 27, p 1753–1762CrossRefGoogle Scholar
  53. 53.
    P.K. Katiyar, S. Misra, and K. Mondal, Corrosion Behavior of Annealed Steels with Different Carbon Contents (0.002% C, 0.17% C, 0.43% C, and 0.7% C) in Freely Aerated 3.5% NaCl Solution. J. Mater. Eng. Perform., 2019, 28, p 4041–4052.CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Prvan Kumar Katiyar
    • 1
  • Prasanna Kumar Behera
    • 2
  • S. Misra
    • 2
  • K. Mondal
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Department of Civil EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations