Advertisement

Controlled Fabrication of Nanoporous Anodic Titania Films on Ti-6Al-4V Alloy for Enhanced Self-Lubricating Properties by Combining Spark Anodization and Electropulse-Assisted Ultrasonic Rolling

  • Yongda YeEmail author
  • Song-Zhu Kure-ChuEmail author
  • Zhiyan Sun
  • Takashi Matsubara
  • Qiulin LiEmail author
  • Takehiko Hihara
Article
  • 9 Downloads

Abstract

We report the fabrication of self-lubricating nanoporous anodic titania films through spark anodization in an aqueous ammonia sulfate electrolyte on a hardened nanocrystalline layer of Ti-6Al-4V rods after electropulse-assisted ultrasonic surface rolling process (EP-USRP). The spark anodization with an optimum anodizing voltage of 130 V produced sponge-like nanoporous anodic titania films with stable crystalline structure of rutile-phase TiO2, and the EP-USRP resulted in a nanocrystalline layer with a higher surface hardening depth (> 220 µm) through severe plastic deformation. The combinatorial technique resulted in excellent tribological properties, with lower friction coefficient of ~ 0.72 (compared to EP-USRP of ~ 0.80), smoother wear scar with less adhesion and less wear loss (maximum depth of 12 nm, 33.3% lower than the EP-USRP sample). These enhancements are attributed to the synergetic effect of the self-lubricating nanoporous anodic titania films formed by spark anodization (which acted as transition layer and prevented direct contact between the counter materials and the substrate) and the hardened nanocrystalline layer formed by EP-USRP (which slowed down the consumption of the anodic powder).

Keywords

electropulse-assisted ultrasonic surface rolling nanocrystalline layer nanoporous anodic titania film spark anodization Ti-6Al-4V tribological properties 

Notes

Acknowledgments

The authors wish to acknowledge the financial support from Shenzhen Science and Technology Supporting Plan Project (GJHS20160331183313435), China. The authors also want to thank The Light Metal Educational Foundation, Nagoya University, and Nagoya Institute of Technology for financial supporting on the research.

References

  1. 1.
    H. Dong and T. Bell, Enhanced Wear Resistance of Titanium Surfaces by a New Thermal Oxidation Treatment, Wear, 2000, 238(2), p 131–137CrossRefGoogle Scholar
  2. 2.
    H. Huang, Z. Wang, J. Lu, and K. Lu, Fatigue Behaviors of AISI, 316L Stainless Steel with a Gradient Nanostructured Surface Layer, Acta Mater., 2015, 87, p 150–160CrossRefGoogle Scholar
  3. 3.
    K. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, Nanostructure Formation Mechanism of α-Titanium Using SMAT, Acta Mater., 2004, 52(14), p 4101–4110CrossRefGoogle Scholar
  4. 4.
    B. Almangour and J.M. Yang, Improving the Surface Quality and Mechanical Properties by Shot-Peening of 17-4 Stainless Steel Fabricated by Additive Manufacturing, Mater. Des., 2016, 110, p 914–924CrossRefGoogle Scholar
  5. 5.
    S. Bagherifard, S. Slawik, I. Fernández-Pariente, C. Pauly, F. Mücklich, and M. Guagliano, Nanoscale Surface Modification of AISI, 316L Stainless Steel by Severe Shot Peening, Mater. Des., 2016, 102, p 68–77CrossRefGoogle Scholar
  6. 6.
    A. Amanov, I.S. Cho, and Y.S. Pyun, Microstructural Evolution and Surface Properties of Nanostructured Cu-Based Alloy by Ultrasonic Nanocrystalline Surface Modification Technique, Appl. Surf. Sci., 2016, 388, p 185–195CrossRefGoogle Scholar
  7. 7.
    G. Li, S.G. Qu, Y.X. Pan, and X.Q. Li, Effects of the Different Frequencies and Loads of Ultrasonic Surface Rolling on Surface Mechanical Properties and Fretting Wear Resistance of HIP Ti-6Al-4V Alloy, Appl. Surf. Sci., 2016, 389, p 324–334CrossRefGoogle Scholar
  8. 8.
    H. Wang, G. Song, and G. Tang, Effect of Electropulsing on Surface Mechanical Properties and Microstructure of AISI, 304 Stainless Steel During Ultrasonic Surface Rolling Process, Mater. Sci. Eng., A, 2016, 662, p 456–467CrossRefGoogle Scholar
  9. 9.
    X. Liu, H. Zhang, and K. Lu, Formation of Nano-laminated Structure in Nickel by Means of Surface Mechanical Grinding Treatment, Acta Mater., 2015, 96, p 24–36CrossRefGoogle Scholar
  10. 10.
    X. Liu, H. Zhang, and K. Lu, Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel, Science, 2013, 342(6156), p 337–340CrossRefGoogle Scholar
  11. 11.
    H. Wang, G. Song, and G. Tang, Evolution of Surface Mechanical Properties and Microstructure of Ti 6Al 4 V Alloy Induced by Electropulsing-Assisted Ultrasonic Surface Rolling Process, J. Alloys Compd., 2016, 681, p 146–156CrossRefGoogle Scholar
  12. 12.
    J. Kuang, X. Li, R. Zhang, Y. Ye, A.A. Luo, and G. Tang, Enhanced Rollability of Mg 3Al 1Zn Alloy by Pulsed Electric Current: A Comparative Study, Mater. Des., 2016, 100, p 204–216CrossRefGoogle Scholar
  13. 13.
    Y. Ye, H. Wang, G. Tang, and G. Song, Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2018, 27(5), p 2394–2403CrossRefGoogle Scholar
  14. 14.
    H. Wang, G. Song, and G. Tang, Enhanced Surface Properties of Austenitic Stainless Steel by Electropulsing-Assisted Ultrasonic Surface Rolling Process, Surf. Coat. Technol., 2015, 282, p 149–154CrossRefGoogle Scholar
  15. 15.
    Y. Ye, S.-Z. Kure-Chu, Z. Sun, X. Li, H. Wang, and G. Tang, Nanocrystallization and Enhanced Surface Mechanical Properties of Commercial Pure Titanium by Electropulsing-Assisted Ultrasonic Surface Rolling, Mater. Des., 2018, 149, p 214–227CrossRefGoogle Scholar
  16. 16.
    A. Yerokhin, A. Leyland, and A. Matthews, Kinetic Aspects of Aluminium Titanate Layer Formation on Titanium Alloys by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2002, 200(1–4), p 172–184CrossRefGoogle Scholar
  17. 17.
    Q. Li, J. Liang, B. Liu, Z. Peng, and Q. Wang, Effects of Cathodic Voltages on Structure and Wear Resistance of Plasma Electrolytic Oxidation Coatings Formed on Aluminium Alloy, Appl. Surf. Sci., 2014, 297, p 176–181CrossRefGoogle Scholar
  18. 18.
    E. Santos, Jr., G.B. de Souza, F.C. Serbena, H.L. Santos, G.G. de Lima, E.M. Szesz, C.M. Lepienski, and N.K. Kuromoto, Effect of Anodizing Time on the Mechanical Properties of Porous Titania Coatings Formed by Micro-arc Oxidation, Surf. Coat. Technol., 2017, 309, p 203–211CrossRefGoogle Scholar
  19. 19.
    M. Fazel, H. Salimijazi, and M. Golozar, A Comparison of Corrosion, Tribocorrosion and Electrochemical Impedance Properties of Pure Ti and Ti6Al4 V Alloy Treated by Micro-arc Oxidation Process, Appl. Surf. Sci., 2015, 324, p 751–756CrossRefGoogle Scholar
  20. 20.
    X. Zhou and C. Ouyang, Anodized Porous Titanium Coated with Ni-CeO2 Deposits for Enhancing Surface Toughness and Wear Resistance, Appl. Surf. Sci., 2017, 405, p 476–488CrossRefGoogle Scholar
  21. 21.
    H. Habazaki, T. Onodera, K. Fushimi, H. Konno, and K. Toyotake, Spark Anodizing of β-Ti Alloy for Wear-Resistant Coating, Surf. Coat. Technol., 2007, 201(21), p 8730–8737CrossRefGoogle Scholar
  22. 22.
    T. Kondo, S. Nagao, S. Hirano, T. Yanagishita, N.T. Nguyen, P. Schmuki, and H. Masuda, Fabrication of Ideally Ordered Anodic Porous TiO2 by Anodization of Pretextured Two-Layered Metals, Electrochem. Commun., 2016, 72, p 100–103CrossRefGoogle Scholar
  23. 23.
    G. Zou, H. Hou, Y. Zhang, Z. Huang, X. Qiu, and X. Ji, Porous Carbon Induced Anatase TiO2 Nanodots/Carbon Composites for High-Performance Sodium-Ion Batteries, J. Electrochem. Soc., 2016, 163(14), p A3117–A3125CrossRefGoogle Scholar
  24. 24.
    D. Quintero, M. Gómez, J. Castaño, E. Tsuji, Y. Aoki, F. Echeverría, and H. Habazaki, Anodic Films Obtained on Ti6Al4 V in Aluminate Solutions by Spark Anodizing: Effect of OH − and WO4 − 2 Additions on the Tribological Properties, Surf. Coat. Technol., 2017, 310, p 180–189CrossRefGoogle Scholar
  25. 25.
    M. Shahzad, M. Chaussumier, R. Chieragatti, C. Mabru, and F. Rezai-Aria, Surface Characterization and Influence of Anodizing Process on Fatigue Life of Al 7050 Alloy, Mater. Des., 2011, 32(6), p 3328–3335CrossRefGoogle Scholar
  26. 26.
    Y.H. Chang, H.W. Lin, and C. Chen, Growth Mechanism of Self-Assembled TiO2 Nanorod Arrays on Si Substrates Fabricated by Ti Anodization, J. Electrochem. Soc., 2012, 159(9), p D512–D517CrossRefGoogle Scholar
  27. 27.
    E.S. Jr., G.B.D. Souza, F.C. Serbena, H.L. Santos, G.G.D. Lima, E.M. Szesz, C.M. Lepienski, and N.K. Kuromoto, Effect of Anodizing Time on the Mechanical Properties of Porous Titania Coatings Formed by Micro-arc Oxidation, Surf. Coat. Technol., 2016, 309, p 203–211Google Scholar
  28. 28.
    A. Yetim, Investigation of Wear Behavior of Titanium Oxide Films, Produced by Anodic Oxidation, on Commercially Pure Titanium in Vacuum Conditions, Surf. Coat. Technol., 2010, 205(6), p 1757–1763CrossRefGoogle Scholar
  29. 29.
    J. Chen, J. Wang, and H. Yuan, Morphology and Performances of the Anodic Oxide Films on Ti6Al4 V Alloy Formed in Alkaline-Silicate Electrolyte with Aminopropyl Silane Addition Under Low Potential, Appl. Surf. Sci., 2013, 284(10), p 900–906CrossRefGoogle Scholar
  30. 30.
    S.-Z. Kure-Chu, H. Sakuyama, S. Saito, S. Miura, H. Yashiro, H. Hirahara, H. Segawa, K. Wada, and S. Inoue, Controllable Fabrication of Multi-tiered Nanoporous Anodic TiO2–TiN Composite Films as High-Performance Anode Materials for Lithium-Ion Batteries, Electrochim. Acta, 2016, 212, p 481–491CrossRefGoogle Scholar
  31. 31.
    Y. Ye, S.-Z. Kure-Chu, Z. Sun, T. Matsubara, G. Tang, T. Hihara, M. Okido, and H. Yashiro, Self-Lubricated Nanoporous TiO2-TiN Films Fabricated on Nanocrystalline Layer of Titanium with Enhanced Tribological Properties, Surf. Coat. Technol., 2018, 351, p 162–170CrossRefGoogle Scholar
  32. 32.
    N.K. Kuromoto, R.A. Simão, and G.A. Soares, Titanium Oxide Films Produced on Commercially Pure Titanium by Anodic Oxidation with Different Voltages, Mater. Charact., 2007, 58(2), p 114–121CrossRefGoogle Scholar
  33. 33.
    D. Zhang, G. Dong, Y. Chen, and Q. Zeng, Electrophoretic Deposition of PTFE Particles on Porous Anodic Aluminum Oxide Film and its Tribological Properties, Appl. Surf. Sci., 2014, 290, p 466–474CrossRefGoogle Scholar
  34. 34.
    A.C. Alves, F. Wenger, P. Ponthiaux, J.P. Celis, A.M. Pinto, L.A. Rocha, and J.C.S. Fernandes, Corrosion Mechanisms in Titanium Oxide-Based Films Produced by Anodic Treatment, Electrochim. Acta, 2017, 234, p 16–27CrossRefGoogle Scholar
  35. 35.
    D.A.H. Hanaor and C.C. Sorrell, Review of the Anatase to Rutile Phase Transformation, J. Mater. Sci., 2011, 46(4), p 855–874CrossRefGoogle Scholar
  36. 36.
    A. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122(2–3), p 73–93CrossRefGoogle Scholar
  37. 37.
    K. Wang, D. Xiong, Y. Deng, and Y. Niu, Ultra-Lubricated Surface of Ti6Al4 V Fabricated with Combination of Porous TiO2 Layer, Ultra-High Molecular Weight Polyethylene Film and Hydrophilic Polymer Brushes, Mater. Des., 2017, 114, p 18–24CrossRefGoogle Scholar
  38. 38.
    M. Wen, C. Wen, P.D. Hodgson, and Y.C. Li, Tribological Behaviour of Pure Ti with a Nanocrystalline Surface Layer Under Different Loads, Tribol. Lett., 2012, 45(1), p 59–66CrossRefGoogle Scholar
  39. 39.
    K. Edalati and Z. Horita, High-Pressure Torsion of Pure Metals: Influence of Atomic Bond Parameters and Stacking Fault Energy on Grain Size and Correlation with Hardness, Acta Mater., 2011, 59(17), p 6831–6836CrossRefGoogle Scholar
  40. 40.
    K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita, Influence of Dislocation–Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys After Severe Plastic Deformation using High-Pressure Torsion, Acta Mater., 2014, 69, p 68–77CrossRefGoogle Scholar
  41. 41.
    C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, Z. Kai, J.M.K. Wiezorek, Z. Zhou, D. Qian, and S.R. Mannava, Gradient Nanostructure and Residual Stresses Induced by Ultrasonic Nano-crystal Surface Modification in 304 Austenitic Stainless Steel for High Strength and High Ductility, Mater. Sci. Eng., A, 2014, 613(11–12), p 274–288CrossRefGoogle Scholar
  42. 42.
    Z. Luo, H. Zhang, N. Hansen, and K. Lu, Quantification of the Microstructures of High Purity Nickel Subjected to Dynamic Plastic Deformation, Acta Mater., 2012, 60(3), p 1322–1333CrossRefGoogle Scholar
  43. 43.
    J. Kuang, X. Li, X. Ye, J. Tang, H. Liu, J. Wang, and G. Tang, Microstructure and Texture Evolution of Magnesium Alloys During Electropulse Treatment, Metall. Mater. Trans. A, 2015, 46(4), p 1789–1804CrossRefGoogle Scholar
  44. 44.
    Y. Jiang, G. Tang, C. Shek, J. Xie, Z. Xu, and Z. Zhang, Mechanism of Electropulsing Induced Recrystallization in a Cold-Rolled Mg-9Al-1Zn Alloy, J. Alloys Compd., 2012, 536, p 94–105CrossRefGoogle Scholar
  45. 45.
    A. Potapova and V. Stolyarov, Deformability and Structural Features of Shape Memory TiNi Alloys Processed by Rolling with Current, Mater. Sci. Eng., A, 2013, 579, p 114–117CrossRefGoogle Scholar
  46. 46.
    G. Tang, J. Zhang, M. Zheng, J. Zhang, W. Fang, and Q. Li, Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L, Mater. Sci. Eng., A, 2000, 281(1–2), p 263–267CrossRefGoogle Scholar
  47. 47.
    L. Wu, C. Wen, G. Zhang, J. Liu, and K. Ma, Influence of Anodizing Time on Morphology, Structure and Tribological Properties of Composite Anodic Films on Titanium Alloy, Vacuum, 2017, 140, p 176–184CrossRefGoogle Scholar
  48. 48.
    A. Amanov and R. Umarov, The Effects of Ultrasonic Nanocrystal Surface Modification Temperature on the Mechanical Properties and Fretting Wear Resistance of Inconel 690 Alloy, Appl. Surf. Sci., 2018, 441, p 515–529CrossRefGoogle Scholar
  49. 49.
    A. Amanov, O.V. Penkov, Y.-S. Pyun, and D.-E. Kim, Effects of Ultrasonic Nanocrystalline Surface Modification on the Tribological Properties of AZ91D Magnesium Alloy, Tribol. Int., 2012, 54, p 106–113CrossRefGoogle Scholar
  50. 50.
    A. Molinari, G. Straffelini, B. Tesi, and T. Bacci, Dry Sliding Wear Mechanisms of the Ti6Al4 V Alloy, Wear, 1997, 208(1–2), p 105–112CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Advanced Materials Institute, Graduate School at ShenzhenTsinghua UniversityShenzhenPeople’s Republic of China
  2. 2.Department of Materials Function and DesignNagoya Institute of TechnologyNagoyaJapan
  3. 3.School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations