Effect of Friction Stir Processing on the Microhardness, Wear and Corrosion Behavior of Al6061 and Al6061/SiO2 Nanocomposites

  • Yousef MazaheriEmail author
  • Akbar Heidarpour
  • Mohammad Mahdi Jalilvand
  • Masoud Roknian


An effect of the friction stir processing (FSP), its pass numbers and addition of the SiO2 nanoparticles on microhardness, wear behavior and corrosion performance of the Al6061 aluminum alloy was investigated. Scanning electron microscopy (SEM) and optical microscopy were utilized to characterize the microstructure of the alloy, FSPed and composite samples. SEM observations revealed that the SiO2 particles were not uniformly dispersed in the matrix after two passes of FSP. However, increasing the pass number more than two passes resulted in a great improvement in the distribution of the SiO2 particles. The application of FSP led to overall softening compared to the base metal. Softening of the Al6061 alloy was probably attributed to the coarsening of Mg2Si. Corrosion resistance of the FSPed samples found a significant reduction compared to the base metal. Applying higher pass number of the process and also addition of the SiO2 nanoparticles improved the wear behavior of the samples.


Al6061 corrosion performance friction stir processing pass number SiO2 nanoparticles wear behavior 



  1. 1.
    I.J. Polmear, D.S. John, J.F. Nie, and M. Qian, Light alloys: metallurgy of the light metals, 5th ed., Elsevier Ltd, Amsterdam, 2017Google Scholar
  2. 2.
    F.C. Campbell, Manufacturing Technology for Aerospace Structural Materials (2006).
  3. 3.
    D. Aruri, K. Adepu, K. Adepu, and K. Bazavada, Wear and Mechanical Properties of 6061-T6 Aluminum Alloy Surface Hybrid Composites [(SiC + Gr) and (SiC + Al2O3)] Fabricated by Friction Stir Processing, J. Mater. Res. Technol., 2013, 2, p 362–369. CrossRefGoogle Scholar
  4. 4.
    D.B. Miracle, Metal Matrix Composites—from Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540. CrossRefGoogle Scholar
  5. 5.
    H. Chen, W. Wang, H. Nie, J. Zhou, Y. Li, and P. Zhang, Microstructure and Mechanical Properties of B4C/6061Al Laminar Composites Fabricated by Power Metallurgy, Vacuum, 2017, 143, p 363–370. CrossRefGoogle Scholar
  6. 6.
    S. Lü, P. Xiao, D. Yuan, K. Hu, and S. Wu, Preparation of Al Matrix Nanocomposites by Diluting the Composite Granules Containing Nano-SiCp Under Ultrasonic Vibration, J. Mater. Sci. Technol., 2018, 34, p 1609–1617. CrossRefGoogle Scholar
  7. 7.
    B.C. Kandpal, J. Kumar, and H. Singh, Manufacturing and Technological Challenges in Stir Casting of Metal Matrix Composites—A Review, Mater. Today Proc., 2018, 5, p 5–10. CrossRefGoogle Scholar
  8. 8.
    S.M.Y. Kaku, A.K. Khanra, and M.J. Davidson, Effect of Deformation on Properties of Al/Al-alloy ZrB2 Powder Metallurgy Composite, J. Alloys Compd., 2018, 747, p 666–675. CrossRefGoogle Scholar
  9. 9.
    A.N. Attia, Surface Metal Matrix Composites, Mater. Des., 2001, 22, p 451–457. CrossRefGoogle Scholar
  10. 10.
    A. Kurt, I. Uygur, and E. Cete, Surface Modification of Aluminium by Friction Stir Processing, J. Mater. Process. Technol., 2011, 211, p 313–317. CrossRefGoogle Scholar
  11. 11.
    S. Dejiu, C. Jingrui, L. Guolong, H. Donglei, W. Lailei, M. Haojie, X. Yonghong, C. He, and Y. Yaqian, Effect of Ultrasonic on Microstructure and Growth Characteristics of Micro-Arc Oxidation Ceramic Coatings on 6061 Aluminum Alloy, Vacuum, 2014, 99, p 143–148. CrossRefGoogle Scholar
  12. 12.
    H.S. Arora, H. Singh, and B.K. Dhindaw, Composite Fabrication Using Friction Stir Processing—A Review, Int. J. Adv. Manuf. Technol., 2012, 61, p 1043–1055. CrossRefGoogle Scholar
  13. 13.
    M.S. Węglowski, Friction Stir Processing—State of the Art, Arch. Civ. Mech. Eng., 2018, 18, p 114–129. CrossRefGoogle Scholar
  14. 14.
    S. Rathee, S. Maheshwari, and A.N. Siddiquee, Issues and Strategies in Composite Fabrication via Friction Stir Processing: A Review, Mater. Manuf. Process., 2018, 33, p 239–261. CrossRefGoogle Scholar
  15. 15.
    S. Rathee, S. Maheshwari, A.N. Siddiquee, and M. Srivastava, Distribution of Reinforcement Particles in Surface Composite Fabrication via Friction Stir Processing: Suitable Strategy, Mater. Manuf. Process., 2018, 33, p 262–269. CrossRefGoogle Scholar
  16. 16.
    Z. Ding, C. Zhang, L. Xie, L.-C. Zhang, L. Wang, and W. Lu, Effects of Friction Stir Processing on the Phase Transformation and Microstructure of TiO2-Compounded Ti–6Al-4V Alloy, Metall. Mater. Trans. A, 2016, Google Scholar
  17. 17.
    P. Liu, Y. Li, G. Zhang, and K. Feng, Relation Between Thermal Effect and Phase Transformation of Aluminium Matrix Surface Composite Adding Al-Based Amorphous Fabricated by FSP, Vacuum, 2016, 131, p 65–68. CrossRefGoogle Scholar
  18. 18.
    Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39, p 642–658. CrossRefGoogle Scholar
  19. 19.
    S. Kumar, S.K. Reddy, and S.V. Joshi, Microstructure and Performance of Cold Sprayed Al–SiC Composite Coatings with High Fraction of Particulates, Surf. Coat. Technol., 2017, 318, p 62–71. CrossRefGoogle Scholar
  20. 20.
    A. Sharma, V.M. Sharma, S. Mewar, S.K. Pal, and J. Paul, Friction Stir Processing of Al6061-SiC-Graphite Hybrid Surface Composites, Mater. Manuf. Process., 2018, 33, p 795–804. CrossRefGoogle Scholar
  21. 21.
    M. Salehi, M. Saadatmand, and J.A. Mohandesi, Optimization of Process Parameters for Producing AA6061/SiC Nanocomposites by Friction Stir Processing, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1055–1063. CrossRefGoogle Scholar
  22. 22.
    D.H. Choi, Y. Il Kim, D.U. Kim, and S.B. Jung, Effect of SiC Particles on Microstructure and Mechanical Property of Friction Stir Processed AA6061-T4, Trans. Nonferrous Met. Soc. China (Engl. Ed.), 2012, 22, p s614–s618. CrossRefGoogle Scholar
  23. 23.
    S. Rathee, S. Maheshwari, A.N. Siddiquee, M. Srivastava, and S.K. Sharma, Process Parameters Optimization for Enhanced Microhardness of AA 6061/SiC Surface Composites Fabricated via Friction Stir Processing (FSP), Mater. Today Proc., 2016, 3, p 4151–4156. CrossRefGoogle Scholar
  24. 24.
    H. Zuhailawati, M.N. Halmy, I.P. Almanar, and B.K. Dhindaw, Friction Stir Processed of 6061-T6 Aluminum Alloy Reinforced with Silica from Rice Husk Ash, Adv. Mater. Res., 2014, 1024, p 227–230. CrossRefGoogle Scholar
  25. 25.
    A. Devaraju, A. Kumar, and B. Kotiveerachari, Influence of Addition of Grp/Al2O3p with SiCp on Wear Properties of Aluminum alloy 6061-T6 Hybrid Composites via Friction Stir Processing, Trans. Nonferrous Met. Soc. China (Engl. Ed.), 2013, Google Scholar
  26. 26.
    K. Zhao, Z.Y. Liu, B.L. Xiao, D.R. Ni, and Z.Y. Ma, Origin of Insignificant Strengthening Effect of CNTs in T6-Treated CNT/6061Al Composites, Acta Metall. Sin. (Engl. Lett.), 2018, 31, p 134–142. CrossRefGoogle Scholar
  27. 27.
    Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Tensile Strength and Electrical Conductivity of Carbon Nanotube Reinforced Aluminum Matrix Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing, J. Mater. Sci. Technol., 2014, 30, p 649–655. CrossRefGoogle Scholar
  28. 28.
    A. Devaraju, A. Kumar, and B. Kotiveerachari, Influence of Rotational Speed and Reinforcements on Wear and Mechanical Properties of Aluminum Hybrid Composites via Friction Stir processing, Mater. Des., 2013, 45, p 576–585. CrossRefGoogle Scholar
  29. 29.
    D.R. Ni, J.J. Wang, Z.N. Zhou, and Z.Y. Ma, Fabrication and Mechanical Properties of Bulk NiTip/Al Composites Prepared by Friction Stir Processing, J. Alloys Compd., 2014, 586, p 368–374. CrossRefGoogle Scholar
  30. 30.
    V. Kishan, A. Devaraju, and K.P. Lakshmi, Tribological Properties of Bano TiB2 Particle Reinforced 6061-T6 Aluminum Alloy Surface Composites via Friction Stir Processing, Mater. Today Proc., 2018, 5, p 1615–1619. CrossRefGoogle Scholar
  31. 31.
    V. Kishan, A. Devaraju, and K.P. Lakshmi, Influence of Volume Percentage of NanoTiB2 Particles on Tribological & Mechanical Behaviour of 6061-T6 Al Alloy Nano-surface Composite Layer Prepared via Friction Stir Process, Def. Technol., 2017, 13, p 16–21. CrossRefGoogle Scholar
  32. 32.
    D.C. Hofmann and K.S. Vecchio, Submerged Friction Stir Processing (SFSP): An Improved Method for Creating Ultra-Fine-Grained Bulk Materials, Mater. Sci. Eng. A, 2005, 402, p 234–241. CrossRefGoogle Scholar
  33. 33.
    A. Ebnonnasir, F. Karimzadeh, and M.H. Enayati, Novel Artificial Neural Network Model for Evaluating Hardness of Stir Zone of Submerge Friction Stir Processed Al 6061-T6 Plate, Mater. Sci. Technol., 2011, 27, p 990–995. CrossRefGoogle Scholar
  34. 34.
    M.M. Jalilvand, Y. Mazaheri, A. Heidarpour, and M. Roknian, Development of A356/Al2O3 + SiO2 Surface Hybrid Nanocomposite by Friction Stir Processing, Surf. Coat. Technol., 2019, 360, p 121–132. CrossRefGoogle Scholar
  35. 35.
    ASTM E384–17, Standard test method for microindentation hardness of materials, ASTM International, West Conshohocken, 2017Google Scholar
  36. 36.
    ASTM G99–17, Standard test method for wear testing with a pin-on-disk apparatus, ASTM International, West Conshohocken, 2017Google Scholar
  37. 37.
    T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys, Scr. Mater., 2008, 58, p 349–354. CrossRefGoogle Scholar
  38. 38.
    F. Humphreys and M. Matherly, Recrystallization and related annealing phenomena, Elsevier Sci. Ltd Publ., New York, 1995, p 173–178Google Scholar
  39. 39.
    F.J. Humphreys, P.B. Prangnell, and R. Priestner, Fine-Grained Alloys by Thermomechanical Processing, Curr. Opin. Solid State Mater. Sci., 2001, 5, p 15–21. CrossRefGoogle Scholar
  40. 40.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50, p 1–78. CrossRefGoogle Scholar
  41. 41.
    Y. Mazaheri, F. Karimzadeh, and M.H. Enayati, Tribological Behavior of A356/Al2O3 Surface Nanocomposite Prepared by Friction Stir Processing, Metall. Mater. Trans. A, 2014, 45, p 2250–2259. CrossRefGoogle Scholar
  42. 42.
    J.F. Guo, J. Liu, C.N. Sun, S. Maleksaeedi, G. Bi, M.J. Tan, and J. Wei, Effects of Nano-Al2O3 Particle Addition on Grain Structure Evolution and Mechanical Behaviour of Friction-Stir-Processed Al, Mater. Sci. Eng. A, 2014, 602, p 143–149. CrossRefGoogle Scholar
  43. 43.
    S. Ahmadifard, S. Kazemi, and A. Heidarpour, Production and Characterization of A5083-Al2O3–TiO2 Hybrid Surface Nanocomposite by Friction Stir Processing, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2018, 232, p 287–293. Google Scholar
  44. 44.
    R. Yang, Z. Zhang, Y. Zhao, G. Chen, Y. Guo, M. Liu, and J. Zhang, Materials Characterization Effect of Multi-Pass Friction Stir Processing on Microstructure and Mechanical Properties of Al3Ti/A356 Composites, Mater. Charact., 2015, 106, p 62–69. CrossRefGoogle Scholar
  45. 45.
    K.-M. Lee, D.-K. Oh, W.-S. Choi, T. Weissgärber, and B. Kieback, Thermomechanical Properties of AlN–Cu Composite Materials Prepared by Solid State Processing, J. Alloys Compd., 2007, 434–435, p 375–377. CrossRefGoogle Scholar
  46. 46.
    C.Y.H. Lim, S.C. Lim, and M. Gupta, Wear Behaviour of SiCp-Reinforced Magnesium Matrix Composites, Wear, 2003, 255, p 629–637. CrossRefGoogle Scholar
  47. 47.
    M. Akbari, M.H. Shojaeefard, P. Asadi, and A. Khalkhali, Wear and Mechanical Properties of Surface Hybrid Metal Matrix Composites on Al–Si Aluminum Alloys Fabricated by Friction Stir Processing, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2017, 233, p 790–799. Google Scholar
  48. 48.
    C.J. Hsu, C.P.Y. Chang, P.W. Kao, N.J. Ho, and C.P.Y. Chang, Al-Al3Ti Nanocomposites Produced in situ by Friction Stir Processing, Acta Mater., 2006, 54, p 5241–5249. CrossRefGoogle Scholar
  49. 49.
    A.G. Rao, V.A. Katkar, G. Gunasekaran, V.P. Deshmukh, N. Prabhu, and B.P. Kashyap, Effect of Multipass Friction Stir Processing on Corrosion Resistance of Hypereutectic Al-30Si Alloy, Corros. Sci., 2014, 83, p 198–208. CrossRefGoogle Scholar
  50. 50.
    K. Surekha, B.S. Murty, and K.P. Rao, Microstructural Characterization and Corrosion Behavior of Multipass Friction Stir Processed AA2219 Aluminium Alloy, Surf. Coat. Technol., 2008, 202, p 4057–4068. CrossRefGoogle Scholar
  51. 51.
    K. Surekha, B.S. Murty, and K. Prasad Rao, Comparison of Corrosion Behaviour of Friction Stir Processed and Laser Melted AA 2219 Aluminium Alloy, Mater. Des., 2011, 32, p 4502–4508. CrossRefGoogle Scholar
  52. 52.
    R.A. Behnagh, M.K. Besharati Givi, and M. Akbari, Mechanical Properties, Corrosion Resistance, and Microstructural Changes During Friction Stir Processing of 5083 Aluminum Rolled Plates, Mater. Manuf. Process., 2012, 27, p 636–640. CrossRefGoogle Scholar
  53. 53.
    M. Amra, K. Ranjbar, and R. Dehmolaei, Mechanical Properties and Corrosion Behavior of CeO2 and SiC Incorporated Al5083 Alloy Surface Composites, J. Mater. Eng. Perform., 2015, 24, p 3169–3179. CrossRefGoogle Scholar
  54. 54.
    F. Gharavi, K.A. Matori, R. Yunus, N.K. Othman, and F. Fadaeifard, Corrosion Behavior of Al6061 Alloy Weldment Produced by Friction Stir Welding Process, J. Mater. Res. Technol., 2015, 4, p 314–322. CrossRefGoogle Scholar
  55. 55.
    J.F. Flores, A. Neville, N. Kapur, and A. Gnanavelu, Corrosion and Erosion-Corrosion Processes of Metal-Matrix Composites in Slurry Conditions, J. Mater. Eng. Perform., 2012, 21, p 395–405. CrossRefGoogle Scholar
  56. 56.
    V. Fahimpour, S.K. Sadrnezhaad, and F. Karimzadeh, Corrosion Behavior of Aluminum 6061 Alloy Joined by Friction Stir Welding and Gas Tungsten Arc Welding Methods, Mater. Des., 2012, 39, p 329–333. CrossRefGoogle Scholar
  57. 57.
    D.R. Ni, B.L. Xiao, Z.Y. Ma, Y.X. Qiao, and Y.G. Zheng, Corrosion Properties of Friction-Stir Processed Cast NiAl Bronze, Corros. Sci., 2010, 52, p 1610–1617. CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Yousef Mazaheri
    • 1
    Email author
  • Akbar Heidarpour
    • 2
  • Mohammad Mahdi Jalilvand
    • 1
  • Masoud Roknian
    • 1
  1. 1.Department of Materials EngineeringBu-Ali Sina UniversityHamedanIran
  2. 2.Department of Metallurgy and Materials EngineeringHamedan University of TechnologyHamedanIran

Personalised recommendations