Journal of Materials Engineering and Performance

, Volume 28, Issue 8, pp 4918–4930 | Cite as

Molecular Dynamics Simulation Study of Uniaxial Ratcheting Behaviors for Ultrafine-Grained Nanocrystalline Nickel

  • Snehanshu PalEmail author
  • Karanam Gururaj
  • Md. Meraj
  • Ravindra Giriraj Bharadwaj


In this paper, molecular dynamics (MD) simulation-based study of deformation behavior of ultrafine-grained nanocrystalline nickel under asymmetric cyclic loading having stress ratios (R) such as − 0.2, − 0.4 and − 0.6 for different temperatures, viz. 100, 300 and 500 K, has been performed using embedded atom method potential. The predicted ratcheting strain by MD simulation for nanocrystalline Ni varies from 15 to 30%. A significant increase in ratcheting strain has been observed with the increase in temperature. It has been observed that the number of vacancies increases, and the number of clusters decreases with the increase in temperature. Slight reduction in crystallinity is identified at the middle of the each loading cycle from the performed cluster analysis. Zigzag pattern of dislocation density has been observed and leads to the decrease in dislocation density with the increase in temperature. Stress ratio does not show any significant effect on the number of vacancies, clusters and dislocation density on structural evolution during the asymmetric cyclic loading. Slight change in the grain rotation has been observed with the increase in temperature, and there is almost no change in the final texture evolved. From the post-tensile tests, ultimate tensile strength that remains same may be due to constant average dislocation density.


molecular dynamics nanocrystalline ratcheting stress ratio 


Supplementary material

11665_2019_4256_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1315 kb)


  1. 1.
    B.S. Murty, P. Shankar, B. Raj, B.B. Rath, and J. Murday, Textbook of Nanoscience and Nanotechnology, Springer, Berlin, 2013CrossRefGoogle Scholar
  2. 2.
    R. Kelsall, I.W. Hamley, and M. Geoghegan, Ed., Nanoscale Science and Technology, Wiley, Hoboken, 2005Google Scholar
  3. 3.
    H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48(1), p 1–29CrossRefGoogle Scholar
  4. 4.
    S. Pal, M. Meraj, and C. Deng, Effect of Zr Addition on Creep Properties of Ultra-fine Grained Nanocrystalline Ni Studied by Molecular Dynamics Simulations, Comput. Mater. Sci., 2017, 126, p 382–392CrossRefGoogle Scholar
  5. 5.
    H.S. Kim and Y. Estrin, Strength and Strain Hardening of Nanocrystalline Materials, Mater. Sci. Eng. A, 2008, 483, p 127–130CrossRefGoogle Scholar
  6. 6.
    B.T.F. Tang, U. Erb, and I. Brooks, Strain Hardening in Polycrystalline and Nanocrystalline Nickel, Adv. Mater. Res., 2012, 409, p 550–554CrossRefGoogle Scholar
  7. 7.
    K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Deformation of Electrodeposited Nanocrystalline Nickel, Acta Mater., 2013, 51(2), p 387–405CrossRefGoogle Scholar
  8. 8.
    T.J. Rupert, D.S. Gianola, Y. Gan, and K.J. Hemker, Experimental observations of stress-driven grain boundary migration, Science, 2009, 326(5960), p 1686–1690CrossRefGoogle Scholar
  9. 9.
    M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, Observation and Measurement of Grain Rotation and Plastic Strain in Nanostructured Metal Thin Films, Nanostruct. Mater., 1995, 5(6), p 689–697CrossRefGoogle Scholar
  10. 10.
    Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao, Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel, Science, 2004, 305(5684), p 654–657CrossRefGoogle Scholar
  11. 11.
    H. Van Swygenhoven and P.M. Derlet, Grain-Boundary Sliding in Nanocrystalline fcc Metals, Phys. Rev. B, 2001, 64(22), p 224105CrossRefGoogle Scholar
  12. 12.
    A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of Metals III: Fracture and Fatigue of Nanostructured Metallic Materials, Acta Mater., 2016, 107, p 508–544CrossRefGoogle Scholar
  13. 13.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51(19), p 5743–5774CrossRefGoogle Scholar
  14. 14.
    M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals, Acta Mater., 2007, 55(12), p 4041–4065CrossRefGoogle Scholar
  15. 15.
    K.S. Siow, A.A.O. Tay, and P. Oruganti, Mechanical Properties of Nanocrystalline Copper and Nickel, Mater. Sci. Technol., 2004, 20(3), p 285–294CrossRefGoogle Scholar
  16. 16.
    H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui, Atomic Mechanism for Dislocation Emission from Nanosized Grain Boundaries, Phys. Rev. B, 2002, 66(2), p 024101CrossRefGoogle Scholar
  17. 17.
    A. Cao and Y. Wei, Atomistic Simulations of Crack Nucleation and Intergranular Fracture in Bulk Nanocrystalline Nickel, Phys. Rev. B, 2007, 76(2), p 024113CrossRefGoogle Scholar
  18. 18.
    T. Hanlon, E.D. Tabachnikova, and S. Suresh, Fatigue Behavior of Nanocrystalline Metals and Alloys, Int. J. Fatigue, 2005, 27(10–12), p 1147–1158CrossRefGoogle Scholar
  19. 19.
    Z. Xia, D. Kujawski, and F. Ellyin, Effect of Mean Stress and Ratcheting Strain on Fatigue Life of Steel, Int. J. Fatigue, 1996, 18(5), p 335–341CrossRefGoogle Scholar
  20. 20.
    S.K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, Cyclic Plastic Deformation and Cyclic Hardening/Softening Behavior in 304LN Stainless Steel, Theor. Appl. Fract. Mech., 2010, 54(1), p 63–70CrossRefGoogle Scholar
  21. 21.
    Y. Jiang and H. Sehitoglu, Cyclic Ratcheting of 1070 Steel Under Multiaxial Stress States, Int. J. Plast., 1994, 10(5), p 579–608CrossRefGoogle Scholar
  22. 22.
    T. Hassan and S. Kyriakides, Ratcheting of Cyclically Hardening and Softening Materials: I. Uniaxial Behavior, Int. J. Plast., 1994, 10(2), p 149–184CrossRefGoogle Scholar
  23. 23.
    X. Yang, Low Cycle Fatigue and Cyclic Stress Ratcheting Failure Behavior of Carbon Steel 45 Under Uniaxial Cyclic Loading, Int. J. Fatigue, 2005, 27(9), p 1124–1132CrossRefGoogle Scholar
  24. 24.
    C.B. Lim, K.S. Kim, and J.B. Seong, Ratcheting and Fatigue Behavior of a Copper Alloy Under Uniaxial Cyclic Loading with Mean Stress, Int. J. Fatigue, 2009, 31(3), p 501–507CrossRefGoogle Scholar
  25. 25.
    G. Kang, Y. Liu, J. Ding, and Q. Gao, Uniaxial Ratcheting and Fatigue Failure of Tempered 42CrMo Steel: Damage Evolution and Damage-Coupled Visco-Plastic Constitutive Model, Int. J. Plast., 2009, 25(5), p 838–860CrossRefGoogle Scholar
  26. 26.
    G. Chen, X. Chen, and C.D. Niu, Uniaxial Ratcheting Behavior of 63Sn37Pb Solder with Loading Histories and Stress Rates, Mater. Sci. Eng. A, 2006, 421(1–2), p 238–244CrossRefGoogle Scholar
  27. 27.
    G.Z. Kang, Y.G. Li, J. Zhang, Y.F. Sun, and Q. Gao, Uniaxial Ratcheting and Failure Behaviors of Two Steels, Theor. Appl. Fract. Mech., 2005, 43(2), p 199–209CrossRefGoogle Scholar
  28. 28.
    W.J. Chang and T.H. Fang, Influence of Temperature on Tensile and Fatigue Behavior of Nanoscale Copper Using Molecular Dynamics Simulation, J. Phys. Chem. Solids, 2003, 64(8), p 1279–1283CrossRefGoogle Scholar
  29. 29.
    J.F. Panzarino, J.J. Ramos, and T.J. Rupert, Quantitative Tracking of Grain Structure Evolution in a Nanocrystalline Metal During Cyclic Loading, Model. Simul. Mater. Sci. Eng., 2015, 23(2), p 025005CrossRefGoogle Scholar
  30. 30.
    J. Schiøtz, Strain-Induced Coarsening in Nanocrystalline Metals Under Cyclic Deformation, Mater. Sci. Eng. A, 2004, 375, p 975–979CrossRefGoogle Scholar
  31. 31.
    D. Farkas, M. Willemann, and B. Hyde, Atomistic Mechanisms of Fatigue in Nanocrystalline Metals, Phys. Rev. Lett., 2005, 94(16), p 165502CrossRefGoogle Scholar
  32. 32.
    T.J. Rupert and C.A. Schuh, Mechanically Driven Grain Boundary Relaxation: A Mechanism for Cyclic Hardening in Nanocrystalline Ni, Philos. Mag. Lett., 2012, 92(1), p 20–28CrossRefGoogle Scholar
  33. 33.
    W.J. Chang, Molecular-Dynamics Study of Mechanical Properties of Nanoscale Copper with Vacancies Under Static and Cyclic Loading, Microelectron. Eng., 2003, 65(1–2), p 239–246CrossRefGoogle Scholar
  34. 34.
    B. Moser, T. Hanlon, K.S. Kumar, and S. Suresh, Cyclic Strain Hardening of Nanocrystalline Nickel, Scr. Mater., 2006, 54(6), p 1151–1155CrossRefGoogle Scholar
  35. 35.
    D. Chen, Structural Modeling of Nanocrystalline Materials, Comput. Mater. Sci., 1995, 3(3), p 327–333CrossRefGoogle Scholar
  36. 36.
    J. Li, AtomEye: An Efficient Atomistic Configuration Viewer, Model. Simul. Mater. Sci. Eng., 2003, 11(2), p 173CrossRefGoogle Scholar
  37. 37.
    Z. Shao, N. Li, J. Lin, and T.A. Dean, Strain Measurement and Error Analysis in Thermo-Mechanical Tensile Tests of Sheet Metals for Hot Stamping Applications, Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci., 2018, 232(11), p 1994–2008CrossRefGoogle Scholar
  38. 38.
    H. Bei, S. Shim, G.M. Pharr, and E.P. George, Effects of Pre-strain on the Compressive Stress–Strain Response of Mo-Alloy Single-Crystal Micropillars, Acta Mater., 2008, 56(17), p 4762–4770CrossRefGoogle Scholar
  39. 39.
    X. Yang, Low Cycle Fatigue and Cyclic Stress Ratcheting Failure Behavior of Carbon Steel 45 Under Uniaxial Cyclic Loading, Int. J. Fatigue, 2005, 27(9), p 1124–1132CrossRefGoogle Scholar
  40. 40.
    J. Jabra, M. Romios, J. Lai, E. Lee, M. Setiawan, J.R. Ogren, and N. Abourialy, The Effect of Thermal Exposure on the Mechanical Properties of 2099-T6 Die Forgings, 2099-T83 Extrusions, 7075-T7651 Plate, 7085-T7452 Die Forgings, 7085-T7651 Plate, and 2397-T87 Plate Aluminum Alloys, J. Mater. Eng. Perform., 2006, 15(5), p 601–607CrossRefGoogle Scholar
  41. 41.
    H.J. Berendsen, J.V. Postma, W.F. van Gunsteren, A.R.H.J. DiNola, and J.R. Haak, Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 1984, 81(8), p 3684–3690CrossRefGoogle Scholar
  42. 42.
    S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19CrossRefGoogle Scholar
  43. 43.
    M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang, Development of Interatomic Potentials Appropriate for Simulation of Liquid and Glass Properties of NiZr2 Alloy, Philos. Mag., 2012, 92(35), p 4454–4469CrossRefGoogle Scholar
  44. 44.
    M. Meraj and S. Pal, Nano-scale Simulation Based Study of Creep Behavior of Bimodal Nanocrystalline Face Centered Cubic Metal, J. Mol. Model., 2017, 23(11), p 309CrossRefGoogle Scholar
  45. 45.
    B. von Blanckenhagen, E. Arzt, and P. Gumbsch, Discrete Dislocation Simulation of Plastic Deformation in Metal Thin Films, Acta Mater., 2004, 52(3), p 773–784CrossRefGoogle Scholar
  46. 46.
    N. Juslin, V. Jansson, and K. Nordlund, Simulation of Cascades in Tungsten-Helium, Philos. Mag., 2010, 90(26), p 3581–3589CrossRefGoogle Scholar
  47. 47.
    K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T.D. de La Rubia, and J. Tarus, Defect Production in Collision Cascades in Elemental Semiconductors and fcc Metals, Phys. Rev. B, 1998, 57(13), p 7556CrossRefGoogle Scholar
  48. 48.
    C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation Nucleation and Defect Structure during Surface Indentation, Phys. Rev. B, 1998, 58(17), p 11085CrossRefGoogle Scholar
  49. 49.
    J.C. Zhang, C. Chen, Q.X. Pei, Q. Wan, W.X. Zhang, and Z.D. Sha, Ab Initio Molecular Dynamics Study of the Local Atomic Structures in Monatomic Metallic Liquid and Glass, Mater. Des., 2015, 77, p 1–5CrossRefGoogle Scholar
  50. 50.
    D. Faken and H. Jónsson, Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics, Comput. Mater. Sci., 1994, 2(2), p 279–286CrossRefGoogle Scholar
  51. 51.
    A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO–The Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2009, 18(1), p 015012CrossRefGoogle Scholar
  52. 52.
    J.F. Panzarino and T.J. Rupert, Tracking Microstructure of Crystalline Materials: A Post-processing Algorithm for Atomistic Simulations, JOM, 2014, 66(3), p 417–428CrossRefGoogle Scholar
  53. 53.
    Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, and B. Schmitt, Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel, Science, 2004, 304(5668), p 273–276CrossRefGoogle Scholar
  54. 54.
    M. Meraj, N. Yedla, and S. Pal, Role of W on the Dislocation Evolution in Ni-W Alloy during Tension Followed by Compression Loading, Met. Mater. Int., 2016, 22(3), p 373–382CrossRefGoogle Scholar
  55. 55.
    F. Panzarino, Quantification of Grain Boundary Mediated Plasticity Mechanisms in Nanocrystalline Metals, Doctoral Dissertation, UC Irvine, 2016.Google Scholar
  56. 56.
    M.F. Ashby and R.A. Verrall, Diffusion-Accommodated Flow and Superplasticity, Acta Metall., 1973, 21(2), p 149–163CrossRefGoogle Scholar
  57. 57.
    K.E. Harris, V.V. Singh, and A.H. King, Grain Rotation in Thin Films of Gold, Acta Mater., 1998, 46(8), p 2623–2633CrossRefGoogle Scholar
  58. 58.
    M.Y. Gutkin, I.A. Ovidko, and N.V. Skiba, Crossover from Grain Boundary Sliding to Rotational Deformation in Nanocrystalline Materials, Acta Mater., 2003, 51(14), p 4059–4071CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Snehanshu Pal
    • 1
    Email author
  • Karanam Gururaj
    • 1
  • Md. Meraj
    • 1
    • 2
  • Ravindra Giriraj Bharadwaj
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology RourkelaRourkelaIndia
  2. 2.Department of Mechanical EngineeringG H Raisoni Academy of Engineering and TechnologyNagpurIndia
  3. 3.Department of Mechanical EngineeringUniversity of California RiversideRiversideUSA

Personalised recommendations