Effect of Y2O3 Addition on the Microstructure, Wear Resistance, and Corrosion Behavior of W-4.9Ni-2.1Fe Heavy Alloy

  • Xuehui Zhang
  • Shengjian Zhu
  • Biao Zhang
  • Tahir Ahmad
  • Chunming Wang
  • Liangliang ZhouEmail author
  • Tongxiang LiangEmail author
  • Bin YangEmail author


Binding and particle phases are the two important parameters influencing materials properties. In this study, a series of novel W-4.9Ni-2.1Fe-xY2O3 (in weight%) alloys with different Y2O3 contents are prepared by secondary ball milling and spark plasma sintering (SPS) techniques to obtain uniformly distributed γ-(Ni, Fe) binding phases and finer grains. The microstructure, mechanical, wear resistance, and corrosion behavior of the sintered bodies with different Y2O3 were obtained by x-ray diffraction, scanning electron microscopy, Rockwell hardness tester, friction wear tester, and three-dimensional profile instruments. The results showed that a certain addition of Y2O3 led to refined grains and uniformed microstructures; but, if excessive, a weak grain refinement would be appeared. Moreover, the grain size tends to be stable with enhancing of the Y2O3 content. Considering properties such as density, hardness, compression yield strength, grain size, and uniform distribution of tungsten hard phase and γ-(Ni, Fe) binding phase, the comprehensive optimal amount of 0.7 wt.% of Y2O3 was attained for the alloy. Meanwhile, the SPS sintered body also exhibited the best friction, wear behavior, and corrosion resistance in 3.5% of NaCl solution.


microstructure secondary ball milling spark plasma sintering tungsten heavy alloy yttrium oxide 



This study is financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0301400), the National Natural Science Foundation of China (Grant No.51871114 and 51804138), the Postdoctoral Science Foundation of China (2019M652290), the Postdoctoral Science Foundation of Jiangxi Province (3205700012 and 2018KY05), and the National Natural Science Foundation of Jiangxi Province (20181BBE58001).


  1. 1.
    N. Senthilnathan, A.R. Annamalai, and G. Venkatachalam, Sintering of Tungsten and Tungsten Heavy Alloys of W–Ni–Fe and W–Ni–Cu: A Review, Trans. Indian Inst. Met., 2017, 5, p 1161–1176CrossRefGoogle Scholar
  2. 2.
    Z. Wu, Y.Z. Li, C.M. Yang, and Q.J. Liu, Mechanical Properties of Tungsten Heavy Alloy and Damage Behaviors After Hypervelocity Impact, Rare Met., 2014, 4, p 414–418CrossRefGoogle Scholar
  3. 3.
    N. Senthilnathan, A.R. Annamalai, and G. Venkatachalam, Microstructure and Mechanical Properties of Spark Plasma Sintered Tungsten Heavy Alloys, Mater. Sci. Eng. A, 2018, 710, p 66–73CrossRefGoogle Scholar
  4. 4.
    W.R. Lu, C.Y. Gao, and Y.L. Ke, Constitutive Modeling of Two-Phase Metallic Composites with Application to Tungsten-Based Composite 93W–4.9Ni–2.1Fe, Met. Mater. Trans. A, 2014, 592, p 136–142Google Scholar
  5. 5.
    D.P. Xiang, L. Ding, Y.Y. Li, X.Y. Chen, and T.M. Zhang, Fabrication Fine-Grained Tungsten Heavy Alloy by Spark Plasma Sintering of Low-Energy Ball-Milled W–2Mo–7Ni–3Fe Powders, Metal. Mater. Trans. A, 2013, 578, p 18–23Google Scholar
  6. 6.
    J.J. Zhang, W.S. Liu, Y.Z. Ma, X.S. Ye, and Y.Y. Wu, Fabrication and Properties of Novel NiWFeB Amorphous Alloys, J. Mater. Eng. Perform., 2017, 26, p 4349–4353CrossRefGoogle Scholar
  7. 7.
    A. Upadhyaya, Processing Strategy for Consolidating Tungsten Heavy Alloys for Ordnance Applications, Mater. Chem. Phys., 2001, 67, p 101–110CrossRefGoogle Scholar
  8. 8.
    J.K. Chaurasia, K. Jitender, A. Muthuchamy, P.N. Patel, and A.R. Annamalai, Densification of SiC Particle Reinforced W–Ni–Fe Heavy Alloy Composites Through Conventional and Spark Plasma Sintering, Trans. Indian Inst. Met., 2017, 8, p 2185–2191CrossRefGoogle Scholar
  9. 9.
    H.Y. Liu, S.H. Cao, J. Zhu, Y. Jin, and B.H. Chen, Densification, Microstructure and Mechanical Properties of 90W–4Ni–6Mn Heavy Alloy, Int. J. Refract. Met. Hard Mater., 2013, 37, p 121–126CrossRefGoogle Scholar
  10. 10.
    J.L. Fan, B.Y. Huang, L.P. Xiao, and B.H. Kear, Sintering Behavior of Nanostructured W Based Composite Powder, Int. J. Powder. Met., 2005, 41, p 49–54Google Scholar
  11. 11.
    X.Q. Li, K. Hu, S.G. Qu, L. Li, and C. Yang, 93W–5.6Ni–1.4Fe Heavy Alloys with Enhanced Performance Prepared by Cyclic Spark Plasma Sintering, Mater. Sci. Eng. A, 2014, 599, p 233–241CrossRefGoogle Scholar
  12. 12.
    T. Tanabe, M. Wada, T. Ohgo, and V. Philipps, Application of Tungsten for Plasma Limiters in TEXTOR, J. Nucl. Mater., 2000, 283(287), p 1128–1133CrossRefGoogle Scholar
  13. 13.
    G.M. Song, Y.J. Wang, and Y. Zhou, Thermomechanical Properties of TiC Particle-Reinforced Tungsten Composites for High Temperature Applications, Int. J. Refract. Met. Hard Mater., 2003, 21, p 1–12CrossRefGoogle Scholar
  14. 14.
    Y.F. Xie, L.L. Zhou, X.Y. Zhang, X.X. Li, Z.L. Zhou, and X.H. Zhang, Microstructure and Properties of W–4.9Ni–2.1Fe Heavy Alloy with Dy2O3 Addition, Rare Met., 2019, 8, p 746–753CrossRefGoogle Scholar
  15. 15.
    X.H. Zhang and S.H. Hong, Fabrication and Properties of Mechanically Alloyed Oxide-Dispersed Tungsten Heavy Alloys, Mater. Sci. Eng. A, 2003, 363, p 179–184CrossRefGoogle Scholar
  16. 16.
    A. Grairia, N.E. Beliardouh, M. Zahzouh, C. Nouveau, and A. Besnard, Dry Sliding Wear Investigation on Tungsten Carbide Particles Reinforced Iron Matrix Composites, Mater. Res. Exp., 2018, 5, p 116528CrossRefGoogle Scholar
  17. 17.
    Y. Kim, S. Lee, E.P. Kim, and J.W. Noh, Effects of ThO2 on the Solid-State Sintering Behavior of W–Ni–Fe Alloy, Int. J. Ref. Met. Hard. Mater., 2011, 1, p 112–116CrossRefGoogle Scholar
  18. 18.
    A.J. Mueller, R. Bianco, and R.W. Buckman, Evaluation of Oxide Dispersion Strengthened (ODS) Molybdenum and Molybdenum–Rhenium Alloys, Int. J. Refract. Met. Hard. Mater., 2000, 18, p 205–211CrossRefGoogle Scholar
  19. 19.
    M.Y. Zhao, Z.J. Zhou, Q.M. Ding, M. Zhong, and K. Arshad, Effect of Rare Earth Elements on the Consolidation Behavior and Microstructure of Tungsten Alloys, Int. J. Refract. Met. Hard. Mater., 2014, 48, p 19–23CrossRefGoogle Scholar
  20. 20.
    Y.L. Pan, L. Ding, H. Li, and D.P. Xiang, Effect of Y2O3 on the Microstructure and Mechanical Properties of Spark Plasma Sintered Fine-Grained W–Ni–Mn Alloy, J. Rare Earths, 2017, 35, p 1149–1155CrossRefGoogle Scholar
  21. 21.
    X.H. Zhang, X.X. Li, H. Chen, T.B. Li, and W. Su, Investigation on Microstructure and Properties of Cu–Al2O3 Composites Fabricated by a Novel In-Situ Reactive Synthesis, Mater. Des., 2016, 92, p 58–63CrossRefGoogle Scholar
  22. 22.
    C.L. Chen, C.L. Huang, and Y. Zeng, Synthesis of ODS Heavy Tungsten Alloys Through Post-Annealing and Secondary Balling Milling, Int. J. Refract. Met. Hard Mater., 2015, 45, p 359–364CrossRefGoogle Scholar
  23. 23.
    X.H. Zhang, H. Chen, X.X. Li, J.H. Li, and W.J. Liu, Effect of Rare Earth on the Microstructure and Performance of Electrodeposited Ni–W Coatings, Rare Met. Mater. Eng., 2016, 10, p 2605–2608Google Scholar
  24. 24.
    H.F. Shen, W.G. Chen, and C.Q. Gu, Research on Nano W–Ni–Fe High Specific Gravity Alloy, Rare Met., 2005, 2, p 133–137Google Scholar
  25. 25.
    T. Liu, J.L. Fan, B.Y. Huang, M.G. Qi, and J.M. Tian, Effect of Mechanical Alloying and Trace Y2O3 Addition on Microstructure of Fine-Grain Tungsten Heavy Alloy Rods, Rare Met. Mater. Eng., 2010, 2, p 314–317Google Scholar
  26. 26.
    Z.W. Zhang, G.L. Chen, G. Chen, and J.E. Zhou, Thermal Stability of W–Ni–Fe Nano Structured and Amorphous Materials by Mechanical Alloying W–Ni–Fe, Rare Met. Mater. Eng., 2019, 11, p 1698–1702Google Scholar
  27. 27.
    X.H. Zhang and X.X. Li, Characteristics of Alumina Particles in Dispersion Strengthened Copper Alloys, Int. J. Min. Met. Mater., 2014, 11, p 1115–1119CrossRefGoogle Scholar
  28. 28.
    M.I.A. El Aal and H.S. Kim, Wear Properties of High Pressure Torsion Processed Ultrafine Grained Al–7%Si Alloy, Mater. Des., 2014, 53, p 373–382CrossRefGoogle Scholar
  29. 29.
    R. Yamanoglu, E. Karakulak, A. Zeren, and M. Zeren, Effect of Heat Treatment on the Tribological Properties of Al–Cu–Mg/nano SiC Composites, Mater. Des., 2013, 49, p 820–825CrossRefGoogle Scholar
  30. 30.
    Y.L. Pan, L. Ding, H. Li, and D.P. Xiang, Effects of Y2O3 on the Microstructure and Mechanical Properties of Spark Plasma Sintered Fine-Grained W–Ni–Mn Alloy, J. Rare Earth, 2017, 35, p 1149–1155CrossRefGoogle Scholar
  31. 31.
    Y.C. Wang, Z.T. Yao, X.W. Cheng, F.Y. Wu, and F.C. Wang, Effects of Y2O3 on the Microstructure and Mechanical Properties of Tungsten Alloys, J. Beijing Inst. Technol., 2007, 9, p 824–827Google Scholar
  32. 32.
    G.C. Wu, J.M. Yang, and D.W. Wang, Effect of La Doping on Impurity Segregation and Fracture Behavior of Tungsten-Based Heavy-Alloy Composites, J. Adv. Mater., 2007, 2, p 47–55Google Scholar
  33. 33.
    D.P. Xiang and L. Ding, Research Progress of Alloying Elements or Oxides Strengthened W–Ni–Fe Heavy Alloys, Chin. J. Nonferr. Met., 2013, 6, p 1549–1559Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Faculty of Materials Metallurgy and ChemistryJiangxi University of Science and TechnologyJiangxiChina
  2. 2.Institute of Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  3. 3.Department of Metallurgy and Materials EngineeringCEET, University of the Punjab LahoreLahorePakistan
  4. 4.School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong ProvinceSouth China University of TechnologyGuangzhouChina

Personalised recommendations