Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 8, pp 4667–4679 | Cite as

Characterizing Transformation Phenomena and Elastic Moduli of Austenite and Oriented Martensite of Superelastic Thin NiTi Wire through Isothermal Dynamic Mechanical Analysis

  • Thierry AlonsoEmail author
  • Denis Favier
  • Grégory Chagnon
Article
  • 45 Downloads

Abstract

In this paper, superelastic behavior of nickel-titanium thin wires is characterized using the method of dynamic mechanical analysis. Nominal dynamic storage modulus \( E^{{\prime }} \) is measured as function of nominal strain and stress during isothermal superelastic tensile tests at three testing temperatures above the reverse martensitic transformation finish temperature. The method brings new information on deformation mechanisms compared to the consideration of only tensile stress–strain curves. It is shown that determination of the elastic moduli E, especially at high strain, requires to calculate the true storage modulus \( E_{\text{t}}^{{\prime }} \). Using \( E_{\text{t}}^{{\prime }} \) and not \( E^{{\prime }} \), elastic modulus of oriented martensite \( E_{\text{M}} \) is determined equal to 73 GPa of the same order than the elastic modulus of austenite \( E_{\text{A}} \) equal to 70 GPa. Two models are then proposed to simulate experimental storage moduli evolution during the tests. A first model explains the \( E^{{\prime }} \) evolution during stress plateau by the localization phenomenon; it leads to express \( E^{{\prime }} \) as function of the nominal strain. A second model describes the evolution of \( E_{\text{t}}^{\prime } \) after the stress plateau as function of true stress and test temperature. This model permits to determine the Clausius–Clapeyron coefficient of the forward transformation.

Keywords

mechanical modeling and simulation nonferrous metals static 

Notes

Acknowledgment

The authors wish to acknowledge the financial support of the ANR research program Guidage d’une Aiguille Médicale Instrumentée—Déformable (ANR12-TECS-0019).

References

  1. 1.
    K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678Google Scholar
  2. 2.
    S. Besseghini, E. Villa, and J. Portman, DMA Characterization of a Ni50.5at%Ti Shape Memory Alloys, Int. J. Appl. Electromagn. Mech., 2006, 23(1-2), p 33–38Google Scholar
  3. 3.
    G. Fan, Y. Zhou, K. Otsuka, X. Ren, K. Nakamura, T. Ohba, T. Suzuki, I. Yoshida, and F. Yin, Effects of Frequency, Composition, Hydrogen and Twin Boundary Density on the Internal Friction of Ti50Ni50-xCux Shape Memory Alloys, Acta Mater., 2006, 54(19), p 5221–5229Google Scholar
  4. 4.
    T. Inamura, Y. Yamamoto, H.Y. Kim, K. Wakashima, S. Miyazaki, and H. Hosoda, Stress Amplitude Dependence of Internal Friction in TiNbAl Shape Memory Alloy, THERMEC 2009, PTS 1-4, Volume 638-642 of Materials Science Forum, T. Chandra, N. Wanderka, W. Reimers, and M. Ionescu, Ed., Minerals, Met & Mat Soc, Montreal, 2010, p 2064–2067Google Scholar
  5. 5.
    A. Nespoli, F. Passaretti, and E. Villa, Phase Transition and Mechanical Damping Properties: A DMTA Study of NiTiCu Shape Memory Alloys, Intermetallics, 2013, 32, p 394–400Google Scholar
  6. 6.
    R. Artiaga, A. Garcia, L. Garcia, A. Varela, J.L. Mier, S. Naya, and M. Grana, DMTA Study of a Nickel-Titanium Wire, J. Therm. Anal. Calorim., 2002, 70(1), p 199–207Google Scholar
  7. 7.
    K.S. Suresh, D. Lahiri, A. Agarwal, and S. Suwas, Microstructure Dependent Elastic Modulus Variation in NiTi Shape Memory Alloy, J. Alloys Compd., 2015, 633, p 7–74Google Scholar
  8. 8.
    J. Van Humbeeck, Damping Capacity of Thermoelastic Martensite in Shape Memory Alloys, J. Alloys Compd., 2003, 355(1–2), p 58–64Google Scholar
  9. 9.
    Y. Liu and J. Van Humbeeck, On the Damping Behaviour of NiTi Shape Memory Alloy, J. Phys. IV, 1997, 7(C5), p 519–524Google Scholar
  10. 10.
    S.H. Chang and S.K. Wu, Internal Friction of R-Phase and B19′ Martensite In Equiatomic TiNi Shape Memory Alloy Under Isothermal Conditions, J. Alloys Compd., 2007, 437(1–2), p 120–126Google Scholar
  11. 11.
    I. Yoshida, D. Monma, and T. Ono, Damping Characteristics of Ti50Ni47Fe3 Alloy, J. Alloys Compd., 2008, 448(1–2), p 349–354Google Scholar
  12. 12.
    Y. Chen, H.C. Jiang, S.W. Liu, L.J. Rong, and X.Q. Zhao, Damping Capacity of TiNi-Based Shape Memory Alloys, J. Alloys Compd., 2009, 482(1–2), p 151–154Google Scholar
  13. 13.
    D. Roy, V. Buravalla, P.D. Mangalgiri, S. Allegavi, and U. Ramamurty, Mechanical Characterization of NiTi SMA Wires Using a Dynamic Mechanical Analyzer, Mater. Sci. Eng. A, 2008, 494(1–2), p 429–435Google Scholar
  14. 14.
    O.T. Bruhns, 60 Years of Research in Plasticity The Contributions of Th. Lehmann and his Group, Procedia Eng., 2017, 173(1), p 3–10Google Scholar
  15. 15.
    Y. Liu and H. Xiang, Apparent Modulus of Elasticity of Near-Equiatomic NiTi, J. Alloys Compd., 1998, 270(1–2), p 154–159Google Scholar
  16. 16.
    P. Schlosser, D. Favier, H. Louche, and L. Orgas, Experimental Characterization of NiTi SMAs Thermomechanical Behaviour Using Temperature and Strain Full-Field Measurements, Adv. Sci. Technol., 2008, 59, p 140–149Google Scholar
  17. 17.
    V. Delobelle, G. Chagnon, D. Favier, and T. Alonso, Study of Electropulse Heat Treatment of Cold Worked NiTi Wire: From Uniform to Localised Tensile Behaviour, J. Mater. Process. Technol., 2016, 227, p 244–250Google Scholar
  18. 18.
    D. Favier, H. Louche, P. Schlosser, L. Orgéas, P. Vacher, and L. Debove, Homogeneous and Heterogeneous Deformation Mechanisms in an Austenitic Polycrystalline NiTi Thin Tube Under Tension. Investigation Via Temperature and Strain Fields Measurements, Acta Mater., 2007, 55(16), p 5310–5322Google Scholar
  19. 19.
    K.L. Ng and Q.P. Sun, Stress-Induced Phase Transformation and Detwinning in NiTi Polycrystalline Shape Memory Alloy Tubes, Mech. Mater., 2006, 38(1–2), p 41–56Google Scholar
  20. 20.
    M.L. Young, M.F.-X. Wagner, J. Frenzel, W.W. Schmahl, and G. Eggeler, Phase Volume Fractions and Strain Measurements in an Ultrafine-Grained NiTi Shape-Memory Alloy During Tensile Loading, Acta Mater., 2010, 58(7), p 2344–2354Google Scholar
  21. 21.
  22. 22.
    J. Ortin and A. Planes, Thermodynamics of Thermoelastic Martensitic Transformations, Acta Metall., 1989, 37(5), p 1433–1441Google Scholar
  23. 23.
    P. Sittner, L. Heller, J. Pilch, C. Curfs, T. Alonso, and D. Favier, Young’s Modulus of Austenite and Martensite Phases in Superelastic NiTi Wires, J. Mater. Eng. Perform., 2014, 23(7), p 2303–2314Google Scholar
  24. 24.
    S. Rajagopalan, A.L. Little, M.A.M. Bourke, and R. Vaidyanathan, Elastic Modulus of Shape-Memory NiTi from In Situ Neutron Diffraction During Macroscopic Loading, Instrumented Indentation, and Extensometry, Appl. Phys. Lett., 2005, 86(8), p 081901Google Scholar
  25. 25.
    S. Qiu, B. Clausen, S.A. Padula, R.D. Noebe, and R. Vaidyanathan, On Elastic Moduli and Elastic Anisotropy in Polycrystalline Martensitic NiTi, Acta Mater., 2011, 59(13), p 5055–5066Google Scholar
  26. 26.
    A.P. Stebner, D.W. Brown, and L.C. Brinson, Young’s Modulus Evolution and Texture-Based Elastic-Inelastic Strain Partitioning During Large Uniaxial Deformations of Monoclinic Nickel-Titanium, Acta Mater., 2013, 61(6), p 1944–1956Google Scholar
  27. 27.
    L. Heller, P. Šittner, P. Sedlák, H. Seiner, O. Tyc, and L. Kadeřávek, Beyond the Strain Recoverability of Martensitic Transformation in NiTi, Int. J. Plast., 2019, 116, p 232–264Google Scholar
  28. 28.
    M. Thomasova, H. Seiner, P. Sedlak, M. Frost, M. Ševčík, I. Szurman, R. Kocich, J. Drahokoupil, P. Sittner, and M. Landa, Evolution of Macroscopic Elastic Moduli of Martensitic Polycrystalline NiTi and NiTiCu Shape Memory Alloys with Pseudoplastic Straining, Acta Mater., 2017, 123, p 146–156Google Scholar
  29. 29.
    A.N. Bucsek, H.M. Paranjape, and A.P. Stebner, Myths and Truths of Nitinol Mechanics: Elasticity and Tension-Compression Asymmetry, Shape Mem. Superelasticity, 2016, 2, p 264–271Google Scholar
  30. 30.
    D. Jiang, S. Kyriakides, C.M. Landis, and K. Kazinakis, Modeling of Propagation of Phase Transformation Fronts in NiTi Under Uniaxial, Eur. J. Mech. A Solids, 2017, 64, p 131–142Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAGGrenobleFrance

Personalised recommendations