Advertisement

Effect of Cobalt Content on Thermal, Mechanical, and Microstructural Properties of Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) High-Entropy Alloys

  • Saurav Kumar
  • Amar PatnaikEmail author
  • Ajaya Kumar Pradhan
  • Vinod KumarEmail author
Article
  • 68 Downloads

Abstract

Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys are developed by arc melting route to investigate the effect of cobalt content on thermal, mechanical, and microstructural properties. The phase, microstructure, and chemical composition are analyzed using x-ray diffraction, transmission electron microscope, and scanning electron microscope with attached energy-dispersive x-ray spectrometer. The obtained results have shown that the Al0.4FeCrNiCox (x = 0-0.5 mol) high-entropy alloys form a simple FCC + BCC-type solid solution and Al0.4FeCrNiCox=1 HEA forms a single-phase FCC structure. The compressive yield strength, microhardness, and thermal conductivity are observed to decrease from 965.22 to 233.37 MPa, 253.6 to 155.6 HV, and from 4.87 to 2.674 W/mK, respectively, whereas the electrical resistivity is observed to increase from 150.30 to 273.74 µΩ-cm with the addition of cobalt from x = 0-1 mol. Differential scanning calorimetry analysis has indicated that the Al0.4FeCrNiCox (x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys are thermally stable up to 1000 °C.

Keywords

DSC hardness high-entropy alloy thermal conductivity 

Notes

Acknowledgments

Authors are thankful to the Institute (Malaviya National Institute of Technology, Jaipur) for financial support, Material Research Center, MNIT Jaipur, and ACMS, IIT Kanpur, for providing experimental facilities and Prof. Anandh Subramaniam (IIT Kanpur) for providing arc melting facility.

References

  1. 1.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRefGoogle Scholar
  2. 2.
    J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, JOM, 2015, 67(10), p 2254–2261CrossRefGoogle Scholar
  3. 3.
    B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, London, 2014, ISBN: 978-0-12-800251-3, pp. 1–204.Google Scholar
  4. 4.
    D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, and V. Kumar, Phase and Thermal Study of Equiatomic AlCuCrFeMnW High Entropy Alloy Processed via Spark Plasma Sintering, Mater. Chem. Phys., 2018, 210, p 71–77CrossRefGoogle Scholar
  5. 5.
    T.M. Butler and M.L. Weaver, Investigation of the Phase Stabilities in AlNiCoCrFe High Entropy Alloys, J. Alloys Compd., 2017, 691, p 119–129CrossRefGoogle Scholar
  6. 6.
    A. Munitz, S. Salhov, S. Hayun, and N. Frage, Heat Treatment Impacts the Micro-Structure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy, J. Alloys Compd., 2016, 683, p 221–230CrossRefGoogle Scholar
  7. 7.
    T.T. Shun and Y.C. Du, Microstructure and Tensile Behaviors of FCC Al0.3CoCrFeNi High Entropy Alloy, J. Alloys Compd., 2009, 479(1-2), p 157–160CrossRefGoogle Scholar
  8. 8.
    Y. Dong and Y. Lu, Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Near-Eutectic AlCoCrFeNi2 High-Entropy Alloy, J. Mater. Eng. Perform., 2018, 27(1), p 109–115CrossRefGoogle Scholar
  9. 9.
    X. Hu and D. Chen, Effect of Ceramic Rolling and Annealing on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys, J. Mater. Eng. Perform., 2018, 27(7), p 3566–3573CrossRefGoogle Scholar
  10. 10.
    Z.M. Jiao, S.G. Ma, G.Z. Yuan, Z.H. Wang, H.J. Yang, and J.W. Qiao, Plastic Deformation of Al0.3CoCrFeNi and AlCoCrFeNi High-Entropy Alloys Under Nanoindentation, J. Mater. Eng. Perform., 2015, 24(8), p 3077–3083CrossRefGoogle Scholar
  11. 11.
    L. Tian, Z.M. Jiao, G.Z. Yuan, S.G. Ma, Z.H. Wang, H.J. Yang, Y. Zhang, and J.W. Qiao, Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation, J. Mater. Eng. Perform., 2016, 25(6), p 2255–2260CrossRefGoogle Scholar
  12. 12.
    R. Wang, K. Zhang, C. Davies, and X. Wu, Evolution of Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Direct Laser Fabrication, J. Alloys Compd., 2017, 694, p 971–981CrossRefGoogle Scholar
  13. 13.
    C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of High-Entropy Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294CrossRefGoogle Scholar
  14. 14.
    D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Understanding the Effect of Tungsten on Corrosion Behavior of AlCuCrFeMnWx High-Entropy Alloys in 3.5 wt% NaCl Solution, J. Mater. Eng. Perform., 2018, 27(9), p 4481–4488CrossRefGoogle Scholar
  15. 15.
    T.M. Butler and M.L. Weaver, Oxidation Behavior of Arc Melted AlCoCrFeNi Multi-Component High-Entropy Alloys, J. Alloys Compd., 2016, 674, p 229–244CrossRefGoogle Scholar
  16. 16.
    Y.X. Liu, C.Q. Cheng, J.L. Shang, R. Wang, P. Li, and J. Zhao, Oxidation Behavior of High-Entropy Alloys AlxCoCrFeNi (x = 0.15, 0.4) in Supercritical Water and Comparison, Trans. Nonferrous Met. Soc. China., 2015, 25(4), p 1341–1351CrossRefGoogle Scholar
  17. 17.
    N.K. Prasad and V. Kumar, Structure–Magnetic Properties Correlation in Mechanically Alloyed Nanocrystalline Fe–Co–Ni–(Mg–Si)x Alloy Powders, J. Mater. Sci.: Mater. Electron., 2016, 27(10), p 10136–10146Google Scholar
  18. 18.
    Y. Dong, L. Jiang, Z. Tang, Y. Lu, and T. Li, Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2 High-Entropy Alloy, J. Mater. Eng. Perform., 2015, 24(11), p 4475–4481CrossRefGoogle Scholar
  19. 19.
    Y. Wang, Y. Yang, H. Yang, M. Zhang, and J. Qiao, Effect of Nitriding on the Tribological Properties of Al1.3CoCuFeNi2 High-Entropy Alloy, J. Alloys Compd., 2017, 725, p 365–372CrossRefGoogle Scholar
  20. 20.
    Y. Wang, Y. Yang, H. Yang, M. Zhang, and S. Ma, Microstructure and Wear Properties of Nitrided AlCoCrFeNi High-Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 233–239CrossRefGoogle Scholar
  21. 21.
    X. Ji, S.H. Alavi, S.P. Harimkar, and Y. Zhang, Sliding Wear of Spark Plasma Sintered CrFeCoNiCu High-Entropy Alloy Coatings: Effect of Aluminum Addition, J. Mater. Eng. Perform., 2018, 27(11), p 5815–5822CrossRefGoogle Scholar
  22. 22.
    K. Lentzaris, A. Poulia, E. Georgatis, A.G. Lekatou, and A.E. Karantzalis, Analysis of Microstructure and Sliding Wear Behavior of Co1.5CrFeNi1.5Ti0.5 High-Entropy Alloy, J. Mater. Eng. Perform., 2018, 27(10), p 5177–5186CrossRefGoogle Scholar
  23. 23.
    M.X. Ren, B.S. Li, and H.Z. Fu, Formation Condition of Solid Solution Type High-Entropy Alloy, Trans. Nonferrous Met. Soc. China, 2013, 23(4), p 991–995CrossRefGoogle Scholar
  24. 24.
    Y. Zhang and W.J. Peng, Microstructural Control and Properties Optimization of High-Entropy Alloys, Procedia Eng., 2012, 27, p 1169–1178CrossRefGoogle Scholar
  25. 25.
    S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of fcc or bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), p 103505CrossRefGoogle Scholar
  26. 26.
    J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperature, Mater. Sci. Forum, 2011, 688, p 419–425CrossRefGoogle Scholar
  27. 27.
    J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D.M. Fabijanic, Comparative Study of the Microstructures and Mechanical Properties of Direct Laser Fabricated and Arc-Melted AlxCoCrFeNi High Entropy Alloys, Mater. Sci. Eng. A, 2015, 633, p 184–193CrossRefGoogle Scholar
  28. 28.
    S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, and J. Li, Strengthening of Nano Precipitations in an Annealed Al0.5CoCrFeNi High Entropy Alloy, Mater. Sci. Eng. A, 2016, 671, p 82–86CrossRefGoogle Scholar
  29. 29.
    Z. Wang, M.C. Gao, S.G. Ma, H.J. Yang, Z.H. Wang, M.Z. Moroz, and J.W. Qiao, Effect of Cold Rolling on the Microstructure and Mechanical Properties of Al0.25CoCrFe1.25 Ni1.25 High-entropy alloy, Mater. Sci. Eng. A., 2015, 645, p 163–169CrossRefGoogle Scholar
  30. 30.
    Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, Microstructure and Mechanical Property of as-Cast, -Homogenized, and -Deformed AlxCoCrFeNi (0 ≤ x≤2) High-Entropy Alloys, J. Alloys Compd., 2009, 488(1), p 57–64CrossRefGoogle Scholar
  31. 31.
    I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, and N. Tsuji, Tailoring Nanostructures and Mechanical Properties of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Using Thermo-Mechanical Processing, Mater. Sci. Eng. A, 2016, 675, p 99–109CrossRefGoogle Scholar
  32. 32.
    W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu, Alloying Behavior, Microstructure and Mechanical Properties in a FeNiCrCo0.3Al0.7 High Entropy Alloy, Mater. Des., 2013, 51, p 854–860CrossRefGoogle Scholar
  33. 33.
    S. Fang, W. Chen, and Z. Fu, Microstructure and Mechanical Properties of Twinned Al0.5CrFeNiCo0.3C0.2 High Entropy Alloy Processed by Mechanical Alloying and Spark Plasma Sintering, Mater. Des., 2014, 54, p 973–979CrossRefGoogle Scholar
  34. 34.
    Y. Zhao, H. Cui, M. Wang, Y. Zhao, X. Zhang, and C. Wang, The Microstructures and Properties Changes Induced by Al: Co Ratios of the AlxCrCo2−xFeNi High Entropy Alloys, Mater. Sci. Eng. A, 2018, 733, p 153–163CrossRefGoogle Scholar
  35. 35.
    G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, and J. Guo, Effect of Co Content on Phase Formation and Mechanical Properties of (AlCoCrFeNi)100−xCox High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 710, p 200–205CrossRefGoogle Scholar
  36. 36.
    K. Jasiewicz, J. Cieslak, S. Kaprzyk, and J. Tobola, Relative Crystal Stability of AlxFeNiCrCo High Entropy Alloys from XRD Analysis and Formation Energy Calculation, J. Alloys Compd., 2015, 648, p 307–312CrossRefGoogle Scholar
  37. 37.
    Y. Dong, X. Gao, Y. Lu, T. Wang, and T. Li, A Multi-Component AlCrFe2Ni2 Alloy with Excellent Mechanical Properties, Mater. Lett., 2016, 169, p 62–64CrossRefGoogle Scholar
  38. 38.
    J. Wang, T. Guo, J. Li, W. Jia, and H. Kou, Microstructure and Mechanical Properties of Non-Equilibrium Solidified CoCrFeNi High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 192–196CrossRefGoogle Scholar
  39. 39.
    H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Microstructure, Thermophysical and Electrical Properties in AlxCoCrFeNi (0 ≤ x ≤ 2) High-Entropy Alloys, Mater. Sci. Eng. B, 2009, 163(3), p 184–189CrossRefGoogle Scholar
  40. 40.
    S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, and N. Uporova, Effect of Synthesis Route on Structure and Properties of AlCoCrFeNi High-Entropy Alloy, Intermetallics, 2017, 83, p 1–8CrossRefGoogle Scholar
  41. 41.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218CrossRefGoogle Scholar
  42. 42.
    S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21(6), p 433–446CrossRefGoogle Scholar
  43. 43.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures, and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93CrossRefGoogle Scholar
  44. 44.
    S. Guo, Phase Selection Rules for Cast High Entropy Alloys: An Overview, Mater. Sci. Technol., 2015, 31(10), p 1223–1230CrossRefGoogle Scholar
  45. 45.
    W. Martienssen and H. Warlimont, Handbook of Condensed Matter and Materials Data, Springer, Berlin, 2005, ISBN 3-540-44376-2CrossRefGoogle Scholar
  46. 46.
    Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Effects of Electro-Negativity on the Stability of Topologically Close Packed Phase in High Entropy Alloys, Intermetallics, 2014, 52, p 105–109CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringMNITJaipurIndia
  2. 2.Department of Mechanical EngineeringMNITJaipurIndia
  3. 3.Discipline of Metallurgy Engineering and Materials ScienceIIT IndoreIndoreIndia

Personalised recommendations