Laser 3D Printing of Fe-Based Bulk Metallic Glass: Microstructure Evolution and Crack Propagation

  • Fei Xie
  • Qingjun ChenEmail author
  • Jiwen Gao
  • Yulong Li


This work presents a comprehensive study of microstructure evolution, crack development and hardness performance of Fe-based bulk metallic glass parts processed by laser 3D printing. The combination of a low scan speed and high energy density generates a low temperature gradient, leading to supercooling and the formation of coarse dendrite and cellular crystal microstructure. Columnar dendrites grow in a single direction with large stress, and cracks are easily formed between the dendrites. The stress intensity factor (SIF) caused by the crack surface tension is small, the crack healing effect is weak, and it is difficult to prevent crack propagation. Cellular grain growth is uniform and more easily accommodates the strain, preventing crack initiation and propagation. In contrast, use of a high scan speed with low energy input produces a fine and uniform dendrite or even nanocrystalline, microstructure with microcracks. The SIF caused by the crack surface tension is large, and the crack healing effect is strong and prevents crack initiation and propagation. For low energy density, the hardness of the sample is similar to the hardness of the cast amorphous. This result indicates that the printing sample retained some amorphous characteristics.


bulk metallic glass energy density hardness laser 3D printing microstructure 



This work was supported by the National Natural Science Foundation of China (Grant No. 51741105).


  1. 1.
    W. Wang, C. Zhang, P. Xu, M. Yasir, and L. Liu, Enhancement of Oxidation and Wear Resistance of Fe-Based Amorphous Coatings by Surface Modification of Feedstock Powders, Mater. Des., 2015, 73, p 35–41CrossRefGoogle Scholar
  2. 2.
    W. Guo, J. Zhang, Y. Wu, S. Hong, and Y. Qin, Fabrication and Characterization of Fe-Based Amorphous Coatings Prepared by High-Velocity Arc Spraying, Mater. Des., 2015, 78(12), p 118–124CrossRefGoogle Scholar
  3. 3.
    S.F. Guo, J.L. Qiu, P. Yu, S.H. Xie, and W. Chen, Fe-Based Bulk Metallic Glasses: Brittle or Ductile?, Appl. Phys. Lett., 2014, 105(16), p 4067–4074CrossRefGoogle Scholar
  4. 4.
    X.P. Li, C.W. Kang, H. Huang, L.C. Zhang, and T.B. Sercombe, Selective Laser Melting of an Al 86Ni6 Y4.5Co2La1.5, Metallic Glass: Processing, Microstructure Evolution and Mechanical Properties, Mater. Sci. Eng. A, 2014, 606(2), p 370–379CrossRefGoogle Scholar
  5. 5.
    H. Sun and K.M. Flores, Spherulitic Crystallization Mechanism of a Zr-Based Bulk Metallic Glass During Laser Processing, Intermetallics, 2013, 43(12), p 53–59CrossRefGoogle Scholar
  6. 6.
    G. Yang, X. Lin, F. Liu, Q. Hu, and L. Ma, Laser Solid Forming Zr-Based Bulk Metallic Glass, Intermetallics, 2012, 22(3), p 110–115CrossRefGoogle Scholar
  7. 7.
    S. Pauly, L. Löber, R. Petters, M. Stoica, S. Scudino, U. Kuhn, and J. Eckert, Processing Metallic Glasses by Selective Laser Melting, Mater. Today, 2013, 16(1-2), p 37–41CrossRefGoogle Scholar
  8. 8.
    D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164CrossRefGoogle Scholar
  9. 9.
    Y. Lu, H. Zhang, H. Li, H. Xu, G. Huang, Z. Qin, and X. Lu, Crystallization Prediction on Laser Three-Dimensional Printing of Zr-Based Bulk Metallic Glass, J. Non-Cryst. Solids, 2017, 461, p 12–17CrossRefGoogle Scholar
  10. 10.
    H.Y. Jung, J.C. Su, K.G. Prashanth, M. Stoica, S. Scudion, S. Yi, U. Kuhn, D.H. Kin, K.B. Kin, and J. Eckert, Fabrication of Fe-Based Bulk Metallic Glass by Selective Laser Melting: A Parameter Study, Mater. Des., 2015, 86, p 703–708CrossRefGoogle Scholar
  11. 11.
    X.P. Li, C.W. Kang, H. Huang, and T.B. Sercombe, The Role of a Low-Energy–Density Re-Scan in Fabricating Crack-Free Al85Ni5Y6Co2Fe2, Bulk Metallic Glass Composites Via Selective Laser Melting, Mater. Des., 2014, 63(2), p 407–411CrossRefGoogle Scholar
  12. 12.
    E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui, Rapid Manufacturing of Metal Components by Laser Forming, Int. J. Mach. Tools Manuf., 2006, 46(12-13), p 1459–1468CrossRefGoogle Scholar
  13. 13.
    N.K. Tolochko, K.I. Arshchinov, S.Z. Mozzharov, Y.V. Khlopkov, N.V. Sobolenko, and I.A. Yadroitsev, Selective l.aser si.ntering of com.pacted pow.ders, Powder Metall. Met. Ceram., 1998, 37(7-8), p 365–368CrossRefGoogle Scholar
  14. 14.
    J. Zhang and R.F. Singer, Hot tearing of nickel-based superalloys During Directional Solidification, Acta Mater., 2002, 50(7), p 1869–1879CrossRefGoogle Scholar
  15. 15.
    D. Ma, H. Tan, D. Wang, Y. Li, and E. Ma, Strategy for Pinpointing the Best Glass-Forming Alloys, Appl. Phys. Lett., 2005, 86(19), p 279–283CrossRefGoogle Scholar
  16. 16.
    Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, and J.F. Sun, Mechanical Performance and Fracture Behavior of Fe41Co7Cr15Mo14Y2C15B6 Bulk Metallic Glass, J. Mater. Res., 2007, 22(2), p 358–363CrossRefGoogle Scholar
  17. 17.
    S.S. Joshi, A.V. Gkriniari, S. Katakam, and N.B. Dahotre, Dynamic Crystallization During Non-isothermal Laser Treatment of Fe–Si–B Metallic Glass, J. Phys. D Appl. Phys., 2015, 48(49), p 495501CrossRefGoogle Scholar
  18. 18.
    D. Ouyang, N. Li, W. Xing, Z. Zhang, and L. Liu, 3D Printing of Crack-Free High Strength Zr-Based Bulk Metallic Glass Composite by Selective Laser Melting, Intermetallics, 2017, 90, p 128–134CrossRefGoogle Scholar
  19. 19.
    S. Katakam, S. Santhanakrishnan, H. Vora, Y.J. Hwang, R. Banerjee, and N.B. Dahotre, Stress-Induced Selective Nano-Crystallization in Laser-Processed Amorphous Fe–Si–B Alloys, Philos. Mag. Lett., 2012, 92(11), p 617–624CrossRefGoogle Scholar
  20. 20.
    I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8069CrossRefGoogle Scholar
  21. 21.
    N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting, Addit. Manuf., 2014, 1-4, p 77–86CrossRefGoogle Scholar
  22. 22.
    N.J. Harrison, I. Todd, and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68CrossRefGoogle Scholar
  23. 23.
    D. Wang, C. Yu, J. Ma, W. Liu, and Z. Shen, Densification and Crack Suppression in Selective Laser Melting of Pure Molybdenum, Mater. Des., 2017, 129, p 44–52CrossRefGoogle Scholar
  24. 24.
    C.Y. Hui, T. Liu, and M.E. Schwaab, How Does Surface Tension Affect Energy Release Rate of Cracks Loaded in Mode I?, Extreme Mech. Lett., 2016, 6, p 31–36CrossRefGoogle Scholar
  25. 25.
    A.I. Rusanov, Surface Thermodynamics of Cracks, Surf. Sci. Rep., 2012, 67(5), p 117–140CrossRefGoogle Scholar
  26. 26.
    G.F. Wang and Y. Li, Influence of Surface Tension on Mode-I, Crack Tip Field, Eng. Fract. Mech., 2013, 109(3), p 290–301CrossRefGoogle Scholar
  27. 27.
    Y. Li and G.F. Wang, Influence of Surface Tension on Mixed-Mode Cracks, Int. J. Appl. Mech., 2015, 7(05), p 155007–1550031CrossRefGoogle Scholar
  28. 28.
    W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers, The Redistribution of Solute Atoms During the Solidification of Metals, Acta Metall., 1953, 1(4), p 428–437CrossRefGoogle Scholar
  29. 29.
    M. Rappaz, J.M. Drezet, and M. Gremaud, A New Hot-Tearing Criterion, Metall. Mater. Trans. A, 1999, 30(2), p 449–455CrossRefGoogle Scholar
  30. 30.
    C.M. Gourlay and A.K. Dahle, Dilatant Shear Bands in Solidifying Metals, Nature, 2007, 445(7123), p 70–73CrossRefGoogle Scholar
  31. 31.
    L. Yuan, C. O’Sullivan, and C.M. Gourlay, Exploring Dendrite Coherency with the Discrete Element Method, Acta Mater., 2012, 60(3), p 1334–1345CrossRefGoogle Scholar
  32. 32.
    C. Suryanarayana and A. Inoue, Bulk Metallic Glasses, Phys. Today, 2010, 66(2), p 32–37Google Scholar
  33. 33.
    A. Vladimir, M.Dušan Blagojević, Tomáš Žák Minić, and D.M. Minic, Influence of Thermal Treatment on Structure and Microhardness of FeNiSiBC Amorphous Alloy, Intermetallics, 2011, 19(12), p 1780–1785CrossRefGoogle Scholar
  34. 34.
    D.M. Minić, V. Blagojević, D.G. Minić, A. Gavrilović, and L. Rafailović, Influence of Thermally Induced Structural Transformations on Hardness in Fe89.8Ni1.5Si5.2B3C0.5 Amorphous Alloy, J. Alloys Compd., 2011, 509(33), p 8350–8355CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanchang Hangkong UniversityNanchangChina
  2. 2.School of Mechanical EngineeringNanchang UniversityNanchangChina

Personalised recommendations