Advertisement

Manufacturing of Ultra-Fine Particle Coal Fly Ash–A380 Aluminum Matrix Composites with Improved Mechanical Properties by Improved Ring Milling and Oscillating Microgrid Mixing

  • Georgios Kaisarlis
  • Georgios Vasiliou
  • Vasileios Spitas
  • Vassilis Inglezakis
  • Grigorios Itskos
  • Christos SpitasEmail author
Article
  • 73 Downloads

Abstract

An experimental study is presented of ultra-fine coal fly ash (CFA) aluminum matrix composites produced by successive high-power ring milling of CFA, oscillating microgrid mixing of the CFA–aluminum melt, gravity casting and rapid cooling. Samples corresponding to different CFA concentrations and particle size distributions (1 μm average, or less) are produced and subjected to microstructural and mechanical characterization, including tensile, compressive, impact, hardness and wear testing. While the usual trade-off between increased strength and hardness and reduced ductility and toughness is observed, the obtained ultra-fine particle composites are confirmed to have overall improved mechanical properties compared to composites with larger size particles previously produced by ball milling.

Keywords

A380 aluminum alloy high-energy ring milling metal matrix composites mechanical testing ultra-fine coal fly ash (CFA) 

Notes

Acknowledgments

This work was supported by the internal fund for research of Nazarbayev University (Project NANOCAST, Grant No. SOE2016002) and the Ministry of Education and Science of Kazakhstan. The authors would also like to thank the thermal power plants of Oskemen and Astana cities for generously providing with CFA samples to carry out the studies.

References

  1. 1.
    T.J.A. Doel and P. Bowen, Tensile Properties of Particulate-Reinforced Metal Matrix Composites, Compos. Part A Appl. Sci. Manuf., 1996, 27(8), p 655–665CrossRefGoogle Scholar
  2. 2.
    S.V. Prasad and R. Asthana, Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations, Tribol. Lett., 2004, 17(3), p 445–453CrossRefGoogle Scholar
  3. 3.
    A.E. Karantzalis, A. Lekatou, E. Georgatis, V. Poulas, and H. Mavros, Microstructural Observations in a Cast Al-Si-Cu/TiC Composite, J. Mater. Eng. Perform., 2010, 19(4), p 585–590CrossRefGoogle Scholar
  4. 4.
    P.K. Rohatgi, Low-Cost, Fly-Ash-Containing Aluminum-Matrix Composites, JOM J. Miner. Met. Mater. Soc., 1994, 46(11), p 55–59CrossRefGoogle Scholar
  5. 5.
    P.K. Rohatgi, R.Q. Guo, H. Iksan, E.J. Borchelt, and R. Asthana, Pressure Infiltration Technique for Synthesis of Aluminum–Fly Ash Particulate Composite, Mater. Sci. Eng., A, 1998, 244(1), p 22–30CrossRefGoogle Scholar
  6. 6.
    Y. Yang, J. Lan, and X. Li, Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy, Mater. Sci. Eng., A, 2004, 380(1), p 378–383CrossRefGoogle Scholar
  7. 7.
    E. Gikunoo, O. Omotoso, and I.N.A. Oguocha, Effect of Fly Ash Particles on the Mechanical Properties of Aluminium Casting Alloy A535, Mater. Sci. Technol., 2005, 21(2), p 143–152CrossRefGoogle Scholar
  8. 8.
    M.K. Surappa, Synthesis of Fly Ash Particle Reinforced A356 Al Composites and Their Characterization, Mater. Sci. Eng., A, 2008, 480(1), p 117–124Google Scholar
  9. 9.
    A. Moutsatsou, G. Itskos, P. Vounatsos, N. Koukouzas, and C. Vasilatos, Microstructural Characterization of PM-Al and PM-Al/Si Composites Reinforced with Lignite Fly Ash, Mater. Sci. Eng., A, 2010, 527(18), p 4788–4795CrossRefGoogle Scholar
  10. 10.
    S. Zahi and A.R. Daud, Fly Ash Characterization and Application in Al-Based Mg Alloys, Mater. Des., 2011, 32(3), p 1337–1346CrossRefGoogle Scholar
  11. 11.
    G. Itskos, A. Moutsatsou, P.K. Rohatgi, N. Koukouzas, C. Vasilatos, and E. Katsika, Compaction of High-Ca Fly Ash-Al-and Al-Alloy-Composites: Evaluation of Their Microstructure and Tribological Performance, Coal Combust. Gasif. Prod., 2011, 3, p 75–82Google Scholar
  12. 12.
    H.C. Anilkumar, H.S. Hebbar, and K.S. Ravishankar, Mechanical Properties of Fly Ash Reinforced Aluminium Alloy (Al6061) Composites, Int. J. Mech. Mater. Eng., 2011, 6(1), p 41–45Google Scholar
  13. 13.
    I.N. Murthy, D.V. Rao, and J.B. Rao, Microstructure and Mechanical Properties of Aluminum–Fly Ash Nano Composites Made by Ultrasonic Method, Mater. Des., 2012, 35, p 55–65CrossRefGoogle Scholar
  14. 14.
    Y. Sahin, Preparation and Some Properties of SiC Particle Reinforced Aluminium Alloy Composites, Mater. Des., 2003, 24(8), p 671–679CrossRefGoogle Scholar
  15. 15.
    H. Ahlatci, T. Kocer, E. Candan, and H. Çimenoğlu, Wear Behaviour of Al/(Al2O3p + SiC p) Hybrid Composites, Tribol. Int., 2006, 39(3), p 213–220CrossRefGoogle Scholar
  16. 16.
    S.Q. Wu, H.Z. Wang, and S.C. Tjong, Mechanical and Wear Behavior of an Al/Si Alloy Metal-Matrix Composite Reinforced with Aluminosilicate Fiber, Compos. Sci. Technol., 1996, 56(11), p 1261–1270CrossRefGoogle Scholar
  17. 17.
    N. Chawla and K.K. Chawla, Metal Matrix Composites, Springer, New York, 2006Google Scholar
  18. 18.
    B.S. Ünlü, Investigation of Tribological and Mechanical Properties Al2O3-SiC Reinforced Al Composites Manufactured by Casting or P/M Method, Mater. Des., 2008, 29(10), p 2002–2008CrossRefGoogle Scholar
  19. 19.
    G.V. Kumar, C.S.P. Rao, and N. Selvaraj, Studies on Mechanical and Dry Sliding Wear of Al6061-SiC Composites, Compos. Part B Eng., 2012, 43(3), p 1185–1191CrossRefGoogle Scholar
  20. 20.
    M.N. Wahab, A.R. Daud, and M.J. Ghazali, Preparation and Characterization of Stir Cast-Aluminum Nitride Reinforced Aluminum Metal Matrix Composites, Int. J. Mech. Mater. Eng., 1970, 4(2), p 115–117Google Scholar
  21. 21.
    S. Basavarajappa, G. Chandramohan, and A. Dinesh, Mechanical Properties of mmc’s—An Experimental Investigation, in International Symposium of Research on Materials and Engineering, IIT, Madras, December, vol. 20, pp. 1–8 (2004)Google Scholar
  22. 22.
    W. Jiang, Z. Fan, G. Li, L. Yang, and X. Liu, Effects of Melt-to-Solid Insert Volume Ratio on the Microstructures and Mechanical Properties of Al/Mg Bimetallic Castings Produced by Lost Foam Casting, Metall. Mater. Trans. A, 2016, 47(12), p 6487–6497CrossRefGoogle Scholar
  23. 23.
    W. Jiang, G. Li, Z. Fan, L. Wang, and F. Liu, Investigation on the Interface Characteristics of Al/Mg Bimetallic Castings Processed by Lost Foam Casting, Metall. Mater. Trans. A, 2016, 47(5), p 2462–2470CrossRefGoogle Scholar
  24. 24.
    S. Charles, and V.P. Arunachalam, Property Analysis and Mathematical Modeling of Machining Properties of Aluminium Alloy Hybrid (Al-Alloy/SiC/Flyash) Composites Produced by Liquid Metallurgy and Powder Metallurgy Techniques (2004).Google Scholar
  25. 25.
    K.V. Mahendra and K. Radhakrishna, Fabrication of Al-4.5% Cu Alloy with Fly Ash Metal Matrix Composites and Its Characterization, Mater. Sci. Pol., 2007, 25(1), p 57–68Google Scholar
  26. 26.
    S. Sudarshan and M.K. Surappa, Synthesis of Fly Ash Particle Reinforced A356 Al Composites and Their Characterization, Mater. Sci. Eng., A, 2008, 480, p 117–124CrossRefGoogle Scholar
  27. 27.
    G. Itskos, P.K. Rohatgi, A. Moutsatsou, J.D. DeFouw, N. Koukouzas, C. Vasilatos, and B.F. Schultz, Synthesis of A356 Al–High-Ca Fly Ash Composites by Pressure Infiltration Technique and Their Characterization, J. Mater. Sci., 2012, 47(9), p 4042–4052CrossRefGoogle Scholar
  28. 28.
    P.K. Rohatgi, A. Daoud, B.F. Schultz, and T. Puri, Microstructure and Mechanical Behavior of Die Casting AZ91D-Fly Ash Cenosphere Composites, Compos. Part A Appl. Sci. Manuf., 2009, 40(6), p 883–896CrossRefGoogle Scholar
  29. 29.
    V. Spitas and C. Spitas, Stochastic Simulation of the Power Requirements of Dry Clinker Pulverisation, Int. J. Miner. Process., 2012, 106, p 42–49CrossRefGoogle Scholar
  30. 30.
    V. Spitas, P. Makris, and M. Founti, A Novel Dry Pulverizer for Low Cost Production of Powders, Part. Sci. Technol., 1999, 17(3), p 217–228CrossRefGoogle Scholar
  31. 31.
    R.D. West and V.M. Malhotra, Rupture of Nanoparticle Agglomerates and Formulation of Al2O3-Epoxy Nanocomposites Using Ultrasonic Cavitation Approach: Effects on the Structural and Mechanical Properties, Polym. Eng. Sci., 2006, 46(4), p 426–430CrossRefGoogle Scholar
  32. 32.
    G. Kaisarlis, E. Tsolakis, G. Vasileiou, V. Spitas, Z. Tauanov, and C. Spitas, Efficient Oscillating Micro-grid Mixing of CFA-Aluminium Composite Melts, J. Mater. Process. Technol., 2018, 254, p 60–71CrossRefGoogle Scholar
  33. 33.
    T. Tauanov, L. Abylgazina, D. Nurmukhambetov, A. Baimenov, C. Spitas, G. Itskos, and V.J. Inglezakis, Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants, in 2017 International Conference on Materials Sciences and Nanomaterials (ICMSN 2017), July 14–16, Barcelona, Spain (2017)Google Scholar
  34. 34.
    X. Querol, N. Moreno, J.T. Umaña, A. Alastuey, E. Hernández, A. Lopez-Soler, and F. Plana, Synthesis of zeolites from coal fly ash: an overview, Int. J. Coal Geol., 2002, 50(1), p 413–423CrossRefGoogle Scholar
  35. 35.
    A.M. Cardoso, A. Paprocki, L.S. Ferret, C.M. Azevedo, and M. Pires, Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment, Fuel, 2015, 139, p 59–67CrossRefGoogle Scholar
  36. 36.
    T. Aldahri, J. Behin, H. Kazemian, and S. Rohani, Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment, Fuel, 2016, 182, p 494–501CrossRefGoogle Scholar
  37. 37.
    T.V. Ojumu, P.W. Du Plessis, and L.F. Petrik, Synthesis of zeolite A from coal fly ash using ultrasonic treatment—a replacement for fusion step, Ultrason. Sonochem., 2016, 31, p 342–349CrossRefGoogle Scholar
  38. 38.
    ASTM B557 M-15, Standard Test Methods for Tension Testing Wrought and Cast Aluminium- and Magnesium-Alloy Products Google Scholar
  39. 39.
    ASTM E9—09, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature Google Scholar
  40. 40.
    ASTM E23—16b, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Georgios Kaisarlis
    • 1
  • Georgios Vasiliou
    • 1
  • Vasileios Spitas
    • 1
  • Vassilis Inglezakis
    • 2
  • Grigorios Itskos
    • 3
  • Christos Spitas
    • 2
    Email author
  1. 1.School of Mechanical EngineeringNational Technical University of AthensAthensGreece
  2. 2.School of EngineeringNazarbayev UniversityAstanaKazakhstan
  3. 3.School of Materials EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations