Advertisement

Effect of Ni Content on Double-Target Co-sputtered CrNiN Coatings

  • Shuyong TanEmail author
  • Xuhai Zhang
  • Rui Zhen
  • Zhangzhong Wang
Article
  • 19 Downloads

Abstract

Double-target co-sputtered CrNiN coatings were deposited by DC-pulsed magnetron reactive sputtering. The nickel content increases from 0.7 to 5.0 at.% with the increased Ni target current from 0.10 to 0.40 A. The influence of Ni content on preferred orientation and properties of CrNiN coatings was investigated. The results show that the doped Ni enters CrN to form (Cr,Ni)N solid solution. CrNiN coatings are mainly composed of CrN phase and demonstrate CrN(111) preferred orientation. All the coatings present columnar growth pattern. And the less obvious the preferred orientation, the more intense competitive growth, the less sufficient the columnar growth, the finer the columnar crystal and the denser the microstructure. In spite of the most dense structure with finest grains, the hardness of CrNiN coating containing 0.7 at.% Ni is the lowest. The hardness is affected by multiple effects of preferred orientation, grain size, solid solution strengthening, morphology and stress, especially the intensity degree of preferred orientation.

Keywords

CrNiN coatings double-target co-sputtering hardness preferred orientation 

Notes

Acknowledgments

This project is supported by the National Natural Science Foundation of China (Grant Nos. 51301087, 51201033), the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (Grant No. ASMA201708), the Innovative Foundation Project of Nanjing Institute of Technology (Grant No. CKJB201701).

References

  1. 1.
    J. Musil, P. Zeman, H. Hruby et al., ZrN/Cu Nanocomposite Film—A Novel Superhard Material, Surf. Coat. Technol., 1999, 120-121, p 179–183CrossRefGoogle Scholar
  2. 2.
    J. Musil, Hard nanocomposite Coatings: Thermal Stability, Oxidation Resistance and Toughness, Surf. Coat. Technol., 2012, 207, p 50–65CrossRefGoogle Scholar
  3. 3.
    M. Jirout and J. Musil, Effect of Addition of Cu into ZrOx Film on its Properties, Surf. Coat. Technol., 2006, 200, p 6792–6800CrossRefGoogle Scholar
  4. 4.
    J. Musil, P. Karvankova, and J. Kasl, Hard and Superhard Zr-Ni-N Nanocomposite Films, Surf. Coat. Technol., 2001, 139(1), p 101–109CrossRefGoogle Scholar
  5. 5.
    M. Misina, J. Musil, and S. Kadlec, Composite TiN–Ni Thin Films Deposited by Reactive Magnetron Sputter Ion-Plating, Surf. Coat. Technol., 1998, 110, p 168–172CrossRefGoogle Scholar
  6. 6.
    J. Musil and F. Regent, Formation of Nanocrystalline NiCr-N Films by Reactive dc Magnetron Sputtering, J. Vac. Sci. Technol. A Vac. Surf. Films, 1998, 16(6), p 3301–3304CrossRefGoogle Scholar
  7. 7.
    J. Musil and H. Poláková, Hard Nanocomposite Zr-Y-N Coatings, Correlation Between Hardness and Structure, Surf. Coat. Technol., 2000, 127, p 99–106CrossRefGoogle Scholar
  8. 8.
    M. Kumar and R. Mitra, Effect of Substrate Temperature and Annealing on Structure, Stress and Properties of Reactively Co-sputtered Ni-TiN Nanocomposite Thin Films, Thin Solid Films, 2017, 624, p 70–82CrossRefGoogle Scholar
  9. 9.
    P.C. Wo, P.R. Munroe, Z.T. Jiang et al., Enhancing Toughness of CrN Coatings by Ni Addition for Safety-Critical Applications, Mater. Sci. Eng. A, 2014, 596, p 264–274CrossRefGoogle Scholar
  10. 10.
    J. Jin, H.J. Duan, and X.H. Li, The Influence of Plasma Nitriding on Microstructure and Properties of CrN and CrNiN Coatings on Ti6Al4V by Magnetron Sputtering, Vacuum, 2017, 136, p 112–120CrossRefGoogle Scholar
  11. 11.
    W.L. Cheng, Z.F. Zhou, P.W. Shum et al., Effect of Ni Addition on the Structure and Properties of Cr-Ni-Ni Coatings Deposited by Closed-Field Unbalanced Magnetron Sputtering Ion Plating, Surf. Coat. Technol., 2013, 229, p 84–89CrossRefGoogle Scholar
  12. 12.
    J. Jin, D.C. Zheng, S.W. Han et al., Effect of Ni Content on the Electrical and Corrosion Properties of CrNiN Coating in Simulated Proton Exchange Membrane Fuel Cell, Int. J. Hydrog. Energy, 2017, 42, p 1142–1153CrossRefGoogle Scholar
  13. 13.
    S.Y. Tan, X.H. Zhang, R. Zhen et al., Effect of Ni Content on CrNiN Coatings Prepared by RF Magnetron Sputtering, Vacuum, 2015, 120, p 54–59CrossRefGoogle Scholar
  14. 14.
    M. Kumar and R. Mitra, Effect of Substrate Bias on Microstructure and Properties of Ni-TiN Nanocomposite Thin Films Deposited by Reactive Co-sputtering, Surf. Coat. Technol., 2014, 251, p 239–246CrossRefGoogle Scholar
  15. 15.
    G. Abadias, Stress and Preferred Orientation in Nitride-Based PVD Coatings, Surf. Coat. Technol., 2008, 202, p 2223–2235CrossRefGoogle Scholar
  16. 16.
    A. Akbari, J.P. Riviere, C. Templier et al., Structural and Mechanical Properties of IBAD Deposited Nanocomposite Ti-Ni-N Coatings, Surf. Coat. Technol., 2006, 200, p 6298–6302CrossRefGoogle Scholar
  17. 17.
    A. Akbari, C. Templier, M.F. Beaufort et al., Ion Beam Assisted Deposition of TiN-Ni Nanocomposite Coatings, Surf. Coat. Technol., 2011, 206, p 972–975CrossRefGoogle Scholar
  18. 18.
    F. Regent and J. Musil, Magnetron Sputtered CrNiN and TiMoN Films: Comparison of Mechanical Properties, Surf. Coat. Technol., 2001, 142–144, p 146–151CrossRefGoogle Scholar
  19. 19.
    J. Šůna, J. Musil, V. Ondok et al., Enhanced Hardness in Sputtered Zr-Ni-N Films, Surf. Coat. Technol., 2006, 200, p 6293–6297CrossRefGoogle Scholar
  20. 20.
    Z.G. Zhang, O. Rapaud, N. Allain et al., Influence of Ni Content on the Structure and Properties of Cr-Ni-N Coatings Prepared by Direct Current Magnetron Sputtering, Thin Solid Films, 2009, 517, p 3304–3309CrossRefGoogle Scholar
  21. 21.
    S. Zhang, D. Sun, Y. Fu et al., Measurement of Thin Films: A Review, Surf. Coat. Technol., 2005, 198, p 74–84CrossRefGoogle Scholar
  22. 22.
    K. Kutschej, P.H. Mayrhofer, M. Kathrein et al., A New Low-Friction Concept for Ti1-xAlxN Based Coatings in High-Temperature Applications, Surf. Coat. Technol., 2004, 2004(188–189), p 358–363CrossRefGoogle Scholar
  23. 23.
    S.F. Hsu, M.H. Weng, J.H. Chou et al., Effect of the Ti-Target Arc Current on the Properties of Ti-Doped ZnO Thin Films Prepared by Dual-Target Catholic Arc Plasma Deposition, Ceram. Int., 2016, 42, p 14438–14442CrossRefGoogle Scholar
  24. 24.
    M. Mikula, D. Plašienka, D.G. Sangiovanni et al., Toughness Enhancement in Highly NbN-Alloyed Ti-Al-N Hard Coatings, Acta Mater., 2016, 121, p 59–67CrossRefGoogle Scholar
  25. 25.
    M. Jaroš, J. Musil, R. Čerstvý et al., Effect of Energy on Structure, Microstructure and Mechanical Properties of Hard Ti(Al, V)Nx Films Prepared by Magnetron Sputtering, Surf. Coat. Technol., 2017, 332, p 190–197CrossRefGoogle Scholar
  26. 26.
    J. Musil, Flexible Hard Nanocomposite Coatings, RSC Adv., 2015, 5, p 60482–60495CrossRefGoogle Scholar
  27. 27.
    J. Musil, Flexible Antibacterial Zr-Cu-N Thin Films Resistant to Cracking, J. Vac. Sci. Technol. A, 2016, 34, p 021508CrossRefGoogle Scholar
  28. 28.
    I. Petrov, P.B. Barna, L. Hultman et al., Microstructural Evolution During Film Growth, J. Vac. Sci. Technol. A, 2003, 21, p S117–S128CrossRefGoogle Scholar
  29. 29.
    C.M. Cotell and J.K. Hirvonen, Effect of Ion Energy on the Mechanical Properties of Ion Beam Assisted Deposition (IBAD) Wear Resistant Coatings, Surf. Coat. Technol., 1996, 81(1), p 118–125CrossRefGoogle Scholar
  30. 30.
    D. Gall, S. Kodambaka, M.A. Wall et al., Pathways of Atomistic Processes on TiN (001) and (111) Surfaces During Film Growth: An Ab Initio Study, J. Appl. Phys., 2003, 93(11), p 9086–9095CrossRefGoogle Scholar
  31. 31.
    C.Q. Liu, B. Wen, X.N. Zhai et al., Cu2ZnSnS4 Films with Different Preferred Orientations Prepared by Pulsed DC Magnetron Sputtering From a Quaternary Ceramic Target, Mater. Lett., 2018, 213, p 241–244CrossRefGoogle Scholar
  32. 32.
    S.Y. Tan, X.H. Zhang, X.J. Wu et al., Comparison of Chromium Nitride Coatings Deposited by DC and RF Magnetron Sputtering, Thin solid films, 2011, 519, p 2116–2120CrossRefGoogle Scholar
  33. 33.
    Q.Q. Guo, J.P. Li, and Y.C. Guo, Effect of Carbon Target Current on the Microstructure of Cp/AlSn Films Deposited via Magnetron Sputtering, Rare Metal Mater. Eng., 2015, 44(8), p 1857–1861CrossRefGoogle Scholar
  34. 34.
    B.A. Movchen and A. Demchishin, Study of Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide, Fiz. Metal. Metalloved, 1969, 28, p 83–90Google Scholar
  35. 35.
    J.A. Thornton, High-Rate Thick-Film Growth, Ann. Rev. Mater. Sci., 1977, 7, p 239–259CrossRefGoogle Scholar
  36. 36.
    P. Barna and M. Adamik, Formation and Characterization of the Structure of Surface Coatings, Kluwer Academic Publisher, Dordrecht, 1997Google Scholar
  37. 37.
    Y. Wang, J. Ghanbaja, F. Soldera et al., Tuning the Structure and Preferred Orientation in Reactively Sputteredcopper Oxide Thin Films, Appl. Surf. Sci., 2015, 335, p 85–91CrossRefGoogle Scholar
  38. 38.
    R. Kužel and J. Buršík, On X-ray Diffraction Study of Preferred Grain Orientations in Polycrystalline Thin Films-Multicomponent Texture in KTaO3 Films, Thin Solid Films, 2013, 530, p 2–8CrossRefGoogle Scholar
  39. 39.
    W.W. Kong, H.J. Bu, B. Gao et al., Effects of Preferred Orientation on Electrical Properties of Mn1.56Co0.96Ni0.48O4±δ Spinel Films, Mater. Lett., 2014, 137, p 36–40CrossRefGoogle Scholar
  40. 40.
    H.S. Maharana, S. Panda, and A. Basu, Effect of Texture and Microstructure on Properties of Electrodeposited Cu-SiO2 and Cu-Y2O3 Coatings, Surf. Coat. Technol., 2017, 315, p 558–566CrossRefGoogle Scholar
  41. 41.
    P.C. Yashar and W.D. Sproul, Nanometer Scale Multilayered Hard Coatings, Vacuum, 1999, 55, p 179–190CrossRefGoogle Scholar
  42. 42.
    O.R. Shojaei, T. Kruml, A. Karimi et al., Mechanical Properties of TiN Films Investigated Using Biaxial Tensile Testing, Surf Eng., 1998, 14(3), p 240–245CrossRefGoogle Scholar
  43. 43.
    E. Torok, A.J. Perry, L. Chollet et al., Young’s Modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 1987, 153, p 37–43CrossRefGoogle Scholar
  44. 44.
    M.A. Baker, P.J. Kench, C. Tsotsos et al., Investigation of the Nanostructure and Wear Properties of Physical Vapor Deposited CrCuN Nanocomposite Coatings, J. Vac. Sci. Technol. A, 2005, 23(3), p 423–433CrossRefGoogle Scholar
  45. 45.
    S. Zhang, D. Sun, Y. Fu et al., Toughening of Hard Nanostructural Thin Films: A Critical Review, Sur. Coat. Technol., 2005, 198, p 2–8CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Shuyong Tan
    • 1
    • 2
    Email author
  • Xuhai Zhang
    • 3
  • Rui Zhen
    • 1
    • 2
  • Zhangzhong Wang
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringNanjing Institute of TechnologyNanjingChina
  2. 2.Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjingChina
  3. 3.School of Material Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations