Advertisement

Electrochemical Investigations on AZ Series Magnesium Alloys as Anode Materials in a Sodium Chloride Solution

  • Jingling Ma
  • Guangxin WangEmail author
  • Yaqiong Li
  • Conghui Qin
  • Fengzhang Ren
Article
  • 15 Downloads

Abstract

Electrochemical and discharge properties of Mg-air battery based on 3N5 Mg, AZ31, AZ61, AZ91 alloys were studied in a 0.6 M NaCl electrolyte, with the aim of selecting a common commercial Mg alloy to decrease passivation and self-corrosion of Mg anode for Mg-air battery. Results obtained indicate that self-corrosion and passivation decrease, and anodic utilization increases gradually with increasing Al content. This is associated with the double effect of Al on discharge performance of Mg anode. Al with high hydrogen overvoltage decreases self-corrosion of Mg anode and passivation of Mg anode by peeling off Mg(OH)2 discharge products. Results of electrochemical impedance spectroscopy and discharge morphology relate well with the results of electrochemical and discharge performances. It is concluded that solution-treated AZ91 alloy has a better discharge performance as anode of Mg-air battery in 0.6 M NaCl electrolyte.

Keywords

AZ alloys corrosion discharge electrochemical performance Mg-air battery 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Henan Province (Grant No. 182300410173), Chinese 02 Special Fund (Grant No. 2017ZX02408003) and Chinese 1000 Plan for High Level Foreign Experts (Grant No. WQ20154100278).

References

  1. 1.
    F. Cheng and J. Chen, Metal-Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts, Chem. Soc. Rev., 2012, 41, p 2172–2192CrossRefGoogle Scholar
  2. 2.
    H.Q. Xiong, H.L. Zhu, J. Luo, K. Yu, C.L. Shi, H.J. Fang, and Y. Zhang, Effects of Heat Treatment on the Discharge Behavior of Mg-6 wt.%Al-1 wt.%Sn Alloy as Anode for Magnesium-Air Batteries, JMEPEG, 2017, 26, p 2901–2911CrossRefGoogle Scholar
  3. 3.
    G. Huang, Y. Zhao, Y. Wang, H. Zhang, and F. Pan, Performance of Mg-Air BATTERY based on AZ31 Alloy Sheet with Twins, Mater. Lett., 2013, 113, p 46–49CrossRefGoogle Scholar
  4. 4.
    J. Zhao, K. Yu, Y. Hu, S. Li, X. Tan, F. Chen, and Z. Yu, Discharge Behavior of Mg-4 wt.%Ga-2 wt.%Hg Alloy as Anode for Seawater Activated Battery, Electrochim. Acta, 2011, 56, p 8224–8231CrossRefGoogle Scholar
  5. 5.
    M. Yuasa, X.S. Huang, K.K. Suzuki, M. Mabuchi, and Y. Chino, Effects of Microstructure on Discharge Behavior of AZ91 Alloy as Anode for Mg-Air Battery, Mater. Trans., 2014, 55, p 1202–1207CrossRefGoogle Scholar
  6. 6.
    N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, and C. Hu, Discharge Behaviour of Mg-Al-Pb and Mg-Al-Pb-In Alloys as Anodes for Mg-Air Battery, Electrochim. Acta, 2014, 149, p 193–205CrossRefGoogle Scholar
  7. 7.
    K. Yu, Q. Huang, J. Zhao, and Y. Dai, Electrochemical Properties of Magnesium Alloy Anodes Discharged in Seawater, Trans. Nonferr. Metal. Soc., 2012, 22, p 2184–2190CrossRefGoogle Scholar
  8. 8.
    Y. Lv, Y. Xu, and D. Cao, The Electrochemical Behaviors of Mg, Mg-Li-Al-Ce and Mg-Li-Al-Ce-Y in Sodium Chloride Solution, J. Power Sources, 2011, 196, p 8809–8814CrossRefGoogle Scholar
  9. 9.
    Y.B. Ma, N. Li, D.Y. Li, M.L. Zhang, and X.M. Huang, Performance of Mg-14Li-1Al-0.1Ce as Anode for Mg-Air Battery, J. Power Sources, 2011, 196, p 2346–2350CrossRefGoogle Scholar
  10. 10.
    M. Yuasa, X. Huang, K. Suzuki, M. Mabuchi, and Y. Chino, Discharge Properties of Mg-Al-Mn-Ca and Mg-Al-Mn Alloys as Anode Materials for Primary Magnesium-Air Batteries, J. Power Sources, 2015, 297, p 449–456CrossRefGoogle Scholar
  11. 11.
    D. Cao, L. Wu, G. Wang, and Y. Lv, Electrochemical Oxidation Behavior of Mg-Li-Al-Ce-Zn and Mg-Li-Al-Ce-Zn-Mn in Sodium Chloride Solution, J. Power Sources, 2008, 183, p 799–804CrossRefGoogle Scholar
  12. 12.
    N. Wang, R. Wang, C. Peng, and Y. Feng, Enhancement of the Discharge Performance of AP65 Magnesium Alloy Anodes by Hot Extrusion, Corros. Sci., 2014, 81, p 85–95CrossRefGoogle Scholar
  13. 13.
    N. Wang, R. Wang, C. Peng, Y. Feng, and B. Chen, Effect of Hot Rolling and Subsequent Annealing on Electrochemical Discharge Behavior of AP65 Magnesium Alloy as Anode for Seawater Activated Battery, Corros. Sci., 2012, 64, p 17–27CrossRefGoogle Scholar
  14. 14.
    Y. Feng, R. Wang, C. Peng, K. Qiu, N. Wang, C. Zhang, and J. Zhang, Aging Behaviour and Electrochemical Properties in Mg-48Hg-8 Ga (wt.%) Alloy, Corros. Sci., 2010, 52, p 3474–3480CrossRefGoogle Scholar
  15. 15.
    Y. Feng, R. Wang, and C. Peng, Influence of Ga and In on Microstructure and Electrochemical Properties of Mg Anodes, Nonferrous Met. Soc. China, 2013, 23, p 2650–2656CrossRefGoogle Scholar
  16. 16.
    N. Wang, R. Wang, C. Peng, and Y. Feng, Effect of Manganese on Discharge and Corrosion Performance of Magnesium alloy AP65 as Anode for Seawater-Activated Battery, Corrosion, 2012, 68, p 388–397CrossRefGoogle Scholar
  17. 17.
    Y. Lv, M. Liu, Y. Xu, D. Cao, and J. Feng, The Electrochemical Behaviors of Mg-8Li-3Al-0.5 Zn and Mg-8Li-3Al-1.0 Zn in Sodium Chloride Solution, J. Power Sources, 2013, 225, p 124–128CrossRefGoogle Scholar
  18. 18.
    G. Huang, Y. Zhao, Y. Wang, H. Zhang, and F. Pan, Performance of Mg-Air Battery Based on AZ31 Alloy Sheet with Twins, Mater. Lett., 2013, 113, p 46–49CrossRefGoogle Scholar
  19. 19.
    J. Zhao, K. Yu, Y. Hu, S. Li, X. Tan, F. Chen, and Z. Yu, Discharge Behavior of Mg-4 wt.%Ga-2 wt.%Hg Alloy as Anode for Seawater Activated Battery, Electrochim. Acta, 2011, 56, p 8224–8231CrossRefGoogle Scholar
  20. 20.
    H.Q. Xiong, K. Yu, and X. Yin, Effects of Microstructure on the Electrochemical Discharge Behavior of Mg-6 wt.%Al-1 wt.%Sn Alloy as Anode for Mg-Air Primary Battery, J. Alloy. Compd., 2017, 708, p 652–660CrossRefGoogle Scholar
  21. 21.
    T.X. Zheng, Y.B. Hu, and Y.X. Zhang, Composition Optimization and Electrochemical Properties of Mg-Al-Sn-Mn Alloy Anode for Mg-Air Batteries, Mater. Des., 2018, 137, p 245–253CrossRefGoogle Scholar
  22. 22.
    N.G. Wang, Y.C. Mu, Q. Li, and Z.C. Shi, Discharge and Corrosion Behaviour of AP65 Magnesium Anode Plates with Different Rolling Reductions, RSC Adv., 2017, 7, p 53226–53235CrossRefGoogle Scholar
  23. 23.
    S.A. Umoren, Y. Li, and F.H. Wang, Effect of Aluminum Microstructure on Corrosion and Inhibiting Effect of Polyacrylic Acid in H2SO4 Solution, J. Appl. Electrochem., 2011, 41, p 307–315CrossRefGoogle Scholar
  24. 24.
    J.R. Li, Q.T. Jiang, H.Y. Sun, and Y.T. Li, Effect of Heat Treatment on Corrosion Behavior of AZ63 Magnesium Alloy in 3.5% Sodium Chloride Solution, Corros. Sci., 2016, 111, p 288–301CrossRefGoogle Scholar
  25. 25.
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and S. Feliú, Influence of Microstructure and Composition on the Corrosion Behaviour of Mg/Al Alloys in Chloride Media, Electrochim. Acta, 2008, 53, p 7890–7902CrossRefGoogle Scholar
  26. 26.
    G. Song, Effect of Tin Modification on Corrosion of AM70 Magnesium Alloy, Corros. Sci., 2009, 51, p 2063–2070CrossRefGoogle Scholar
  27. 27.
    G. Song, A.L. Bowles, and D.H. StJohn, Corrosion Resistance of Aged Die Cast Magnesium Alloy AZ91D, Mater. Sci. Eng., A, 2004, 366, p 74–86CrossRefGoogle Scholar
  28. 28.
    S. Yuan, H. Lu, Z. Sun, L. Fan, X. Zhu, and W. Zhang, Electrochemical Performance of Mg-3Al modified with Ga, In and Sn as Anodes for Mg-Air Battery, J. Electrochem. Soc., 2016, 163, p A1181–A1187CrossRefGoogle Scholar
  29. 29.
    V. Moutarlier, M.P. Gigandet, B. Normand, and J. Pagetti, EIS Characterisation of Anodic Films Formed on 2024 Aluminum Alloy in Sulphuric Acid Containing Molybdate or Permanganate Species, Corros. Sci., 2005, 47, p 937–945CrossRefGoogle Scholar
  30. 30.
    X. Chen, W.M. Tian, S.M. Li, M. Yu, and J.H. Liu, Effect of Temperature on Corrosion Behavior of 3003 Aluminum Alloy in Ethylene Glycol-Water Solution, Chin. J. Aeronaut., 2016, 29, p 114–120Google Scholar
  31. 31.
    D.A. Dornbusch, R. Hilton, M.J. Gordon, and G.J. Suppes, Effects of Syndication on EIS Results for Zinc Alkaline Batteries, ECS Electrochem. Lett., 2013, 2(9), p A89–A95CrossRefGoogle Scholar
  32. 32.
    M. Bethencourt, F.J. Botana, M.J. Cano, M. Marcos, J.M. Sánchez-Amaya, and L. González-Rovira, Using EIS to Analyse Samples of Al-Mg alloy AA5083 Treated by Thermal Activation in Cerium Salt Baths, Corros. Sci., 2008, 50, p 1376–1384CrossRefGoogle Scholar
  33. 33.
    F. Rosalbino, E. Angelini, D. Macciò, A. Saccone, and S. Delfino, Application of EIS to Assess the Effect of Rare Earths Small Addition on the Corrosion Behaviour of Zn-5% Al (Galfan) Alloy in Neutral Aerated Sodium Chloride Solution, Electrochim. Acta, 2009, 54, p 1204–1209CrossRefGoogle Scholar
  34. 34.
    T. Zhang, G.Z. Meng, Y.W. Shao, Z.Y. Cui, and F.H. Wang, Corrosion of Hot Extrusion AZ91 Magnesium alloy. Part II: Effect of Rare Earth Element Neodymium (Nd) on the Corrosion Behavior of Extruded Alloy, Corros. Sci., 2011, 53, p 2934–2942CrossRefGoogle Scholar
  35. 35.
    J.R. Li, B.B. Zhang, Q.Y. Wei, N. Wang, and B.R. Hou, Electrochemical Behavior of Mg-Al-Zn-In Alloy as Anode Materials in 3.5 wt.% NaCl Solution, Electrochim. Acta, 2017, 238, p 156–167CrossRefGoogle Scholar
  36. 36.
    W.R. Osório, L.C. Peixoto, and A. Garcia, The Effects of Ag Content and Dendrite Spacing on the Electrochemical Behavior of Pb-Ag Alloys for Pb-Acid Battery Components, J. Power Sources, 2013, 238, p 324–335CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Jingling Ma
    • 1
    • 2
  • Guangxin Wang
    • 1
    Email author
  • Yaqiong Li
    • 1
  • Conghui Qin
    • 1
  • Fengzhang Ren
    • 2
  1. 1.Research Center for High Purity MaterialsHenan University Science and TechnologyLuoyangPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Nonferrous MetalsHenan University of Science and TechnologyLuoyangPeople’s Republic of China

Personalised recommendations