Analysis of the Temperature Field in Al-Cu Dissimilar Materials Friction Stir Welding

  • Hongyu Sun
  • Qi ZhouEmail author
  • Jun Zhu
  • Yong Peng
  • Xinrui Ma


Friction stir welding (FSW) as a solid-state joining method has been applied to the Al-Cu dissimilar joint. However, most research has focused on the technical study of FSW and little attention has been paid to the investigation of the heat source. This paper aims to develop a numerical thermomechanical model for Al-Cu dissimilar FSW process. The model results show that the calculated temperature values are closely correlated with the experimental temperature value, ensuring the accuracy of the model. Furthermore, the model is used to analyze the characteristics of the dissimilar FSW temperature field. It is observed that the temperature field was asymmetrical, which was caused by the different properties of the materials and the different heat inputs in the welding process. Moreover, the variation in the temperature field decreases with the increase in the offset.


Al-Cu dissimilar FSW numerical thermomechanical model temperature field 



The authors would like to express their gratitude to the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131261)for its financial support. Our deepest thanks would also go to the Instrument Center of Nanjing University of Science and Technology and Jingjiang Robot Intelligent Manufacturing Center.


  1. 1.
    P. Carlone, A. Astarita, G.S. Palazzo et al., Microstructural Aspects in Al-Cu Dissimilar Jointing by FSW, J. Int. J. Adv. Manuf. Technol., 2015, 79(5–8), p 1109–1116CrossRefGoogle Scholar
  2. 2.
    E. Hoyosa, D. Lópezb, and H. Alvarezb, A Phenomenologically Based Material Flow Model for Friction Stir Welding, J. Mater. Des., 2016, 111, p 321–330CrossRefGoogle Scholar
  3. 3.
    M.I. Costaa, D. Verderac, C. Leitãoa et al., Dissimilar Friction Stir Lap Welding of AA 5754-H22/AA 6082-T6 Aluminum Alloys: Influence of Material Properties and Tool Geometry on Weld Strength, J. Mater. Des., 2015, 87, p 721–731CrossRefGoogle Scholar
  4. 4.
    A.C.F. Silva, D.F.O. Braga, M.A.V. Figueiredo et al., Ultimate Tensile Strength Optimization of Different FSW Aluminum Alloy Joints, J. Int. J. Adv. Manuf. Technol., 2015, 9(5–8), p 805–814CrossRefGoogle Scholar
  5. 5.
    P.K. Sahu and S. Pal, Influence of Metallic Foil Alloying by FSW Process on Mechanical Properties and Metallurgical Characterization of AM20 Mg Alloy, J. Mater. Sci. Eng. A, 2017, 684, p 442–455CrossRefGoogle Scholar
  6. 6.
    N. Xu, R. Ueji, Y. Morisada et al., Modification of Mechanical Properties of Friction Stir Welded Cu Joint by Additional Liquid CO2 Cooling, J. Mater. Des., 2014, 56(4), p 20–25CrossRefGoogle Scholar
  7. 7.
    A.M. El-Batahgy, T. Miura, R. Ueji et al., Investigation into Feasibility of FSW Process for Welding 1600 MPa Quenched and Tempered Steel, J. Mater. Sci. Eng. A, 2016, 651, p 904–913CrossRefGoogle Scholar
  8. 8.
    X. Liu, S.H. Lan, and J. Ni, Electrically Assisted Friction Stir Welding for Joining Al 6061 to TRIP 780 Steel, J. J. Mater. Process. Technol., 2015, 219, p 112–123CrossRefGoogle Scholar
  9. 9.
    H. Sun, Q. Zhou, J. Zhu et al., Analysis on the Fracture of Al-Cu Dissimilar Materials Friction Stir Welding Lap Joint, J. Mater. Eng. Perform., 2017, 26(12), p 5715–5722CrossRefGoogle Scholar
  10. 10.
    B. Li, Z.H. Zhang, Y.F. Shen et al., Dissimilar Friction Stir Welding of Ti-6Al-4V Alloy and Aluminum Alloy Employing a Modified Butt Joint Configuration: Influences of Process Variables on the Weld Interfaces and Tensile Properties, J. Mater. Des., 2014, 53, p 838–848CrossRefGoogle Scholar
  11. 11.
    H. Kasai, Y. Morisada, and H. Fujii, Dissimilar FSW of Immiscible Materials: Steel/Magnesium, J. Mater. Sci. Eng. A-Struct., 2015, 624, p 250–255CrossRefGoogle Scholar
  12. 12.
    P. Carlone, A. Astarita, G.S. Palazzo et al., Microstructural Aspects in Al-Cu Dissimilar Jointing by FSW, J. Int. J. Adv. Manuf. Technol., 2015, 79, p 1109–1116CrossRefGoogle Scholar
  13. 13.
    A.O. Al-Roubaiy, S.M. Nabat, and A.D.L. Batako, Experimental and Theoretical Analysis of Friction Stir Welding of Al-Cu Joints, J. Int. J. Adv. Manuf. Technol., 2014, 71(9–12), p 1631–1642CrossRefGoogle Scholar
  14. 14.
    P. Xue, B. Xiao, and Z. Ma, Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints, J. Metall. Mater. Trans. A, 2015, 46(7), p 3091–3103CrossRefGoogle Scholar
  15. 15.
    S.B. Aziz, M.W. Dewan, D.J. Huggett et al., Impact of Friction Stir Welding (FSW) Process Parameters on Thermal Modeling and Heat Generation of Aluminum Alloy Joints, J. Acta Metall. Sin., 2016, 29, p 869–883CrossRefGoogle Scholar
  16. 16.
    J.H. Wang, S. Yao, L.W. Wei et al., Heat Transfer and Mechanical Calculation Model of Friction Stir Welding, Trans. China. Weld. Inst. J., 2000, 4, p 61–64Google Scholar
  17. 17.
    C. Gallais, A. Denquin, Modelling the relationship between process parameters, microstructural evolutions and mechanical behavior in a friction stir welded 6XXX aluminum alloy. in 5th International Friction Stir Welding Symposium, 2004.Google Scholar
  18. 18.
    P. Ferro and F. Bonollo, A Semianalytical Thermal Model for Fiction Stir Welding, J. Metall. Mater. Trans. A, 2010, 41(2), p 440–449CrossRefGoogle Scholar
  19. 19.
    X. Zhang, B. Xiao, and Z. Ma, A Transient Thermal Model for Friction Stir Weld. Part II: Effects of Weld Conditions, J. Metall. Mater. Trans. A, 2011, 42(10), p 3229–3239CrossRefGoogle Scholar
  20. 20.
    P. Yi and A.D. Lados, Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties, J. Metall. Mater. Trans. A, 2017, 48(4), p 1708–1726CrossRefGoogle Scholar
  21. 21.
    Y.H. Xiao, H.F. Zhan, Y.T. Gu et al., Modeling Heat Transfer During Friction Stir Welding Using a Meshless Particle Method, J. Int. J. Heat. Mass. Trans., 2017, 104, p 288–300CrossRefGoogle Scholar
  22. 22.
    N. Contuzzi, S.L. Campanelli, G. Casalino et al., On the Role of the Thermal Contact Conductance During the Friction Stir Welding of an AA5754-H111 Butt Joint, J. Appl. Therm. Eng., 2016, 104, p 263–273CrossRefGoogle Scholar
  23. 23.
    H. Schmidt, J. Hattel, and J. Wert, An Analytical Model for the Heat Generation n Friction Stir Welding, J. Medell. Simul. Mater. Sci. Eng., 2004, 12(1), p 143–157CrossRefGoogle Scholar
  24. 24.
    P. Xue, D.R. Ni, D. Wang et al., Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of the Dissimilar Al-Cu Joints, J. Mat. Sci. Eng. A, 2011, 528(13–14), p 4683–4689CrossRefGoogle Scholar
  25. 25.
    P. Heurtier, M. Jones, C. Desrayaud et al., Mechanical and Thermal Modelling of Friction Stir Welding, J. J. Mater. Process. Technol., 2006, 171(3), p 348–357CrossRefGoogle Scholar
  26. 26.
    E. Hersenta, J.H. Driverb, D. Piota et al., Integrated Modelling of Precipitation During Friction Stir Welding of 2024-T3 Aluminium Alloy, J. Mater. Sci. Technol., 2010, 26(11), p 1345–1352CrossRefGoogle Scholar
  27. 27.
    J. Hilgert, H.N.B. Schmidt, J.F. Santos et al., Thermal Models for Bobbin Tool Friction Stir Welding, J. J. Mater. Process. Technol., 2011, 211(2), p 197–204CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Hongyu Sun
    • 1
  • Qi Zhou
    • 1
    Email author
  • Jun Zhu
    • 2
  • Yong Peng
    • 1
  • Xinrui Ma
    • 1
  1. 1.School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Nanjing Institute of TechnologyNanjingChina

Personalised recommendations