Enhanced Mechanical, Tribological, and Thermal Properties of Fe3Al Composites with Carbon Nanotubes

  • Yuan Yao
  • Cansen Liu
  • Xiaohua JieEmail author
  • Yongjin Mai


In this work, Fe3Al-based composites reinforced with carbon nanotubes were fabricated by a hot-press sintering process under various sintering pressures. The effects of sintering pressure and additives (alumina and lanthanum) on both the physical and the mechanical properties were systematically investigated. Results showed that with the sintering pressure of 15 MPa and incorporation of carbon nanotubes (CNTs), the microhardness of Fe3Al composite exhibited a peak value at 1038.1 HV, which was ~ 60% higher than those without the addition of carbon nanotubes (644.9 HV). Also, both the compressive yield strength and the thermal conductivity of Fe3Al composite were also significantly improved. Results of wear test showed the Fe3Al composite exhibited a low wearing rate (10−6-10−5 order of magnitude) and a friction coefficient (0.53-0.67).


carbon nanotubes Fe3Al-based composite microstructure wear 



This work was financially supported by the Science and Technology Planning Project of Guangdong Province of China (No: 2014A010105046). The authors are sincerely grateful to Prof. H.T. Lin and Prof. S. G. Lu for their invaluable inputs and suggestions, and Prof. Y. M. Zhang, Mr. F. X. Chen, Dr. J. Q. Hu, Dr. Y. X. Wu, Ms. W.T. Lin and X.H. Zheng for carrying out this work.


  1. 1.
    Y. Liu, J. Cheng, Y. Bing, S. Zhu, Z. Qiao, and J. Yang, Study of the Tribological Behaviors and Wear Mechanisms of WC-Co and WC-Fe3Al Hard Materials Under Dry Sliding Condition, Tribol. Int., 2017, 109, p 19–25CrossRefGoogle Scholar
  2. 2.
    M. Amiriyan, H.D. Alamdari, C. Blais, S. Savoie, R. Schulz, and M. Gariépy, Dry Sliding Wear Behavior of Fe3Al and Fe3Al/TiC Coatings Prepared by HVOF, Wear, 2015, 342-343, p 154–162CrossRefGoogle Scholar
  3. 3.
    C. Shen, K.D. Liss, Z. Pan, Z. Wang, X. Li, and H. Li, Thermal Cycling of Fe3Al Based Iron Aluminide During the Wire-Arc Additive Manufacturing Process: An In Situ Neutron Diffraction Study, Intermetallics, 2018, 92, p 101–107CrossRefGoogle Scholar
  4. 4.
    C.T. Liu, J. Stringer, J.N. Mundy, L.L. Horton, and P. Angelini, Ordered Intermetallic Alloys: An Assessment, Intermetallics, 1997, 5, p 579–596CrossRefGoogle Scholar
  5. 5.
    J. Wang, J. Xing, L. Cao, W. Su, and Y. Gao, Dry Sliding Wear Behavior of Fe3Al Alloys Prepared by Mechanical Alloying and Plasma Activated Sintering, Wear, 2010, 268, p 473–480CrossRefGoogle Scholar
  6. 6.
    Y. Bai, J. Xing, H. Wu, Z. Liu, Y. Gao, and S. Ma, Study on Preparation and Mechanical Properties of Fe3Al–20 wt.%Al2O3 Composites, Mater. Des., 2012, 39, p 211–219CrossRefGoogle Scholar
  7. 7.
    F. Hadef, Solid-State Reactions During Mechanical Alloying of Ternary Fe–Al–X (X = Ni, Mn, Cu, Ti, Cr, B, Si) Systems: A Review, Cheminform, 2016, 47, p 105–118CrossRefGoogle Scholar
  8. 8.
    X. Zhang, J. Ma, L. Fu, S. Zhu, F. Li, J. Yang, and W. Liu, High Temperature Wear Resistance of Fe–28Al–5Cr Alloy and Its Composites Reinforced by TiC, Tribol. Int., 2013, 61, p 48–55CrossRefGoogle Scholar
  9. 9.
    X. Zhang, J. Cheng, M. Niu, H. Tan, W. Liu, and J. Yang, Microstructure and High Temperature Tribological Behavior of Fe3Al–Ba0.25Sr0.75SO4 Self-Lubricating Composites, Tribol. Int., 2016, 101, p 81–87CrossRefGoogle Scholar
  10. 10.
    J. Cheng, Y. Bing, Z. Qiao, J. Yang, and W. Liu, Mechanical and Dry-Sliding Tribological Properties of Fe3Al Based Composites Reinforced by Novel W0.5Al0.5C0.5 Particulates, Mater Des., 2015, 66, p 67–76CrossRefGoogle Scholar
  11. 11.
    M. Amiriyan, C. Blais, S. Savoie, R. Schulz, M. Gariépy, and H. Alamdari, Mechanical Behavior and Sliding Wear Studies on Iron Aluminide Coatings Reinforced with Titanium Carbide, Metals - Open Access Metall. J., 2017, 7, p 1–12Google Scholar
  12. 12.
    Y. Bai, J. Xing, Z. Liu, H. Wu, S. Ma, Q. Huang, and Y. Gao, Tribological Properties of In Situ Fe3Al-20wt.% Al2O3 Composites, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol., 2013, 227(1), p 67–78CrossRefGoogle Scholar
  13. 13.
    J. Zhang, K. Sun, J. Wang, B. Tian, H. Wang, and Y. Yin, Sliding Wear Behavior of Plasma Sprayed Fe3Al-Al2O3 Graded Coatings, Thin Solid Films, 2008, 516, p 5681–5685CrossRefGoogle Scholar
  14. 14.
    M.K. Aghajanian, M.A. Rocazella, J.T. Burke, and S.D. Keck, The Fabrication of Metal Matrix Composites by a Pressureless Infiltration Technique, J. Mater. Sci., 1991, 26(2), p 447–454CrossRefGoogle Scholar
  15. 15.
    S.K. Mukherjee and S. Bandyopadhyay, A Novel Way to Make Fe3Al/Al2O3 Composite, Mater. Sci. Eng., A, 1995, 202(1-2), p 123–127CrossRefGoogle Scholar
  16. 16.
    M. Niu, X. Zhang, and J. Yang, Tribological Behaviour of Fe3Al–Ba0.25Sr0.75SO4 Self-Lubricating Composites in Vacuum and Air, Vacuum, 2018, 154, p 315–321CrossRefGoogle Scholar
  17. 17.
    M. Khodaei, M.H. Enayati, and F. Karimzadeh, The Structure and Mechanical Properties of Fe3 Al–30 vol.% Al2O3 Nanocomposite, J. Alloy. Compd., 2009, 488, p 134–137CrossRefGoogle Scholar
  18. 18.
    W.S. Lim, M. Khadem, A. Yu, and D.E. Kim, Fabrication of Polytetrafluoroethylene–Carbon Nanotube Composite Coatings for Friction and Wear Reduction, Polym. Compos., 2016, 39, p 710–722CrossRefGoogle Scholar
  19. 19.
    S. Zhao, Z. Zheng, Z. Huang, S. Dong, P. Luo, Z. Zhang, and Y. Wang, Cu Matrix Composites Reinforced with Aligned Carbon Nanotubes: Mechanical, Electrical and Thermal Properties, Mater. Sci. Eng., A, 2016, 675, p 82–91CrossRefGoogle Scholar
  20. 20.
    S. Arai and K. Miyagawa, Frictional and Wear Properties of Cobalt/Multiwalled Carbon Nanotube Composite Films Formed by Electrodeposition, Surf. Coat Technol., 2013, 235, p 204–211CrossRefGoogle Scholar
  21. 21.
    E.E. Anand and S. Natarajan, Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings, J. Mater. Eng. Perform., 2015, 24, p 1–8CrossRefGoogle Scholar
  22. 22.
    S.M. Arab, S.M. Zebarjad, and S.A.J. Jahromi, Fabrication of AZ31/MWCNTs Surface Metal Matrix Composites by Friction Stir Processing: Investigation of Microstructure and Mechanical Properties, J. Mater. Eng. Perform., 2017, 26, p 1–9CrossRefGoogle Scholar
  23. 23.
    N.S. Anas, R.K. Dash, T.N. Rao, and R. Vijay, Effect of Carbon Nanotubes as Reinforcement on the Mechanical Properties of Aluminum-Copper-Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26, p 1–11CrossRefGoogle Scholar
  24. 24.
    X.S. Wang, Q.Q. Li, J. Xie, Z. Jin, J.Y. Wang, Y. Li, K.L. Jiang, and S.S. Fan, Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates, Nano Lett., 2009, 9, p 3137–3141CrossRefGoogle Scholar
  25. 25.
    E. Pop, D. Mann, Q. Wang, K. Goodson, and H.J. Dai, Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature, Nano Lett., 2005, 6, p 96–100CrossRefGoogle Scholar
  26. 26.
    H.D. Wang, P.F. He, G.Z. Ma, B.S. Xu, Z.G. Xing, S.Y. Chen, Z. Liu, and Y.W. Wang, Tribological Behavior of Plasma Sprayed Carbon Nanotubes Reinforced TiO2 Coatings, J. Eur. Ceram. Soc., 2018, 38, p 3660–3672CrossRefGoogle Scholar
  27. 27.
    M. Zhou, Y. Mai, H. Ling, F. Chen, W. Lian, and X. Jie, Electrodeposition of CNTs/Copper Composite Coatings with Enhanced Tribological Performance from a Low Concentration CNTs Colloidal Solution, Mater. Res. Bull., 2017, 97, p 537–543CrossRefGoogle Scholar
  28. 28.
    L. Zhang, Q. Wang, G. Liu, W. Guo, B. Ye, W. Li, H. Jiang, and W. Ding, Tribological Behavior of Carbon Nanotube-Reinforced AZ91D Composites Processed by Cyclic Extrusion and Compression, Tribol. Lett., 2018, 66, p 1–11CrossRefGoogle Scholar
  29. 29.
    L.X. Pang, K.N. Sun, S. Ren, C. Sun, R.H. Fan, and Z.H. Lu, Fabrication and Microstructure of Fe3Al Matrix Composite Reinforced by Carbon Nanotube, Mater. Sci. Eng. A, 2007, 447, p 146–149CrossRefGoogle Scholar
  30. 30.
    L.X. Pang, K.N. Sun, S. Ren, C. Sun, and J.Q. Bi, Microstructure, Hardness, and Bending Strength of Carbon Nanotube Iron Aluminide Composites, J. Compos. Mater., 2007, 41, p 2025–2031CrossRefGoogle Scholar
  31. 31.
    X. Ma, L. Li, Z. Zhang, H. Wang, E. Wang, and T. Qiu, Effects of Rare Earth La on Microstructure and Properties of Ag–21Cu–25Sn Alloy Ribbon Prepared by Melt Spinning, Mater. Des., 2015, 83, p 1–5CrossRefGoogle Scholar
  32. 32.
    R.D. Cowan, Proposed Method of Measuring Thermal Diffusivity at High Temperatures, J. Appl. Phys., 1963, 34(4), p 926–927CrossRefGoogle Scholar
  33. 33.
    H. Fujii, H. Nakae, and K. Okada, Four Wetting Phases in AIN/AI, and AIN Composites/AI, Systems, Models of Nonreactive, Reactive, and Composite Systems, Metall. Mater. Trans. A, 1993, 24, p 1391–1397CrossRefGoogle Scholar
  34. 34.
    S. Das, A Review on Carbon Nano-Tubes–A New Era of Nanotechnology, Int. J. Emerg. Technol. Adv. Eng., 2013, 3, p 774–781Google Scholar
  35. 35.
    M.F. Ashby, A First Report on Sintering Diagrams, Acta Metall., 1974, 22, p 275–289CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Yuan Yao
    • 1
  • Cansen Liu
    • 1
  • Xiaohua Jie
    • 1
    Email author
  • Yongjin Mai
    • 1
  1. 1.School of Materials and EnergyGuangdong University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations