The Anodic Role of Ni-Containing LPSO Phases During the Microgalvanic Corrosion of Mg98Gd1.5Ni0.5 Alloy

  • Zhenhua HanEmail author
  • Kai Zhang
  • Jun Yang
  • Ran Wei
  • Yixin Liu
  • Changjun Zhang


In the present study, the corrosion characteristics of cast Mg98Gd1.5Ni0.5 alloy with Ni-containing long-period stacking ordered (LPSO) structures were investigated. The results reveal that the Ni-containing LPSO phases were more active than the Mg matrix and preferentially eroded during the immersion process. This behavior indicates that the Ni-containing LPSO phases could have acted as microanodes, in contrast to the cathodic role of the Ni-free LPSO phases in other Mg alloys. Furthermore, the potential difference of approximately 600 mV between the phases accelerated the dissolution rate of the LPSO phase. Corrosion of the Mg matrix also occurred due to the inhomogeneous microstructure of the matrix. The synergetic corrosion between the Ni-containing LPSO phases and the enrichment of Cl in the thick corrosion product films dominated the propagation of corrosion, which substantially deteriorated the corrosion resistance and accelerated the corrosion process of the Mg98Gd1.5Ni0.5 alloy.


corrosion resistance long-period stacking ordered structures Mg alloy microstructure 



This work was supported by the National Natural Science Foundation of China (Grant No. 51401160), the China Postdoctoral Science Foundation (Grant No. 2015M582688), the Innovation Chain of Key Industries in Shaanxi–Industrial Field Project [2016KTZDGY09-06-02] and the Key Research and Development Plan of Shaanxi Province [2018ZDXM-GY-123].


  1. 1.
    Z.Q. Zhang, X. Liu, W.Y. Hu, J.H. Li, Q.C. Le, L. Bao, Z.J. Zhu, and J.Z. Cui, Microstructures, Mechanical Properties and Corrosion Behaviors of Mg-Y-Zn-Zr Alloys with Specific Y/Zn Mole Ratios, J. Alloys Compd., 2015, 624, p 116–125CrossRefGoogle Scholar
  2. 2.
    C.Q. Li, D.K. Xu, Z.R. Zeng, B.J. Wang, L.Y. Sheng, X.B. Chen, and E.H. Han, Effect of Volume Fraction of LPSO Phases on Corrosion and Mechanical Properties of Mg-Zn-Y Alloys, Mater. Des., 2017, 121, p 430–441CrossRefGoogle Scholar
  3. 3.
    J.S. Zhang, J.D. Xu, W.L. Cheng, C.J. Chen, and J.J. Kang, Corrosion Behavior of Mg–Zn–Y Alloy with Long-Period Stacking Ordered Structures, J. Mater. Sci. Technol., 2012, 28, p 1157–1162CrossRefGoogle Scholar
  4. 4.
    P. Pérez, S. Cabeza, G. Garcés, and P. Adeva, Influence of Long Period Stacking Ordered Phase Arrangements on the Corrosion Behaviour of Extruded Mg97Y2Zn1 Alloy, Corros. Sci., 2016, 107, p 107–112CrossRefGoogle Scholar
  5. 5.
    S. Izumi, M. Yamasaki, and Y. Kawamura, Relation Between Corrosion Behavior and Microstructure of Mg-Zn-Y Alloys Prepared by Rapid Solidification at Various Cooling Rates, Corros. Sci., 2009, 51, p 395–402CrossRefGoogle Scholar
  6. 6.
    T.B. Abbott, Magnesium: Industrial and Research Developments over the Last 15 Years, Corrosion, 2015, 71, p 120–127CrossRefGoogle Scholar
  7. 7.
    Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength Above 600 MPa, Mater. Trans., 2001, 42, p 1172–1176CrossRefGoogle Scholar
  8. 8.
    S. González, P. Pérez, G. Garcés, and P. Adeva, Influence of the Processing Route on the Mechanical Properties at High Temperatures of Mg-Ni-Y-RE Alloys Containing LPSO-Phases, Mater. Sci. Eng. A, 2016, 673, p 266–279CrossRefGoogle Scholar
  9. 9.
    J. Yin, C.H. Lu, X.J. Ma, B.Y. Dai, and H.L. Chen, Investigation of Two-Phase Mg-Gd-Ni Alloys with Highly Stable Long Period Stacking Ordered Phases, Intermetallics, 2016, 68, p 63–70CrossRefGoogle Scholar
  10. 10.
    H. Liu, F. Xue, J. Bai, J. Zhou, and X.D. Liu, Effect of Substitution of 1 at % Ni for Zn on the Microstructure and Mechanical Properties of Mg94Y4Zn2 Alloy, Mater. Sci. Eng. A, 2013, 585, p 387–395CrossRefGoogle Scholar
  11. 11.
    S.Z. Wu, J.S. Zhang, Z.F. Zhang, C.X. Xu, K.B. Nie, and X.F. Niu, A High Strength and Good Ductility Mg–Y–NI–TI, Alloy with Long Period Stacking Ordered Structure Processed by Hot Rolling and Aging Treatment, Mater. Sci. Eng. A, 2015, 648, p 134–139CrossRefGoogle Scholar
  12. 12.
    T. Itoi, K. Takahashi, H. Moriyama, and M. Hirohashi, A High-Strength Mg–Ni–Y Alloy Sheet with a Long-Period Ordered Phase Prepared by Hot-Rolling, Scr. Mater., 2008, 59, p 1155–1158CrossRefGoogle Scholar
  13. 13.
    X. Yang, S.S. Wu, S.L. Lü, L.Y. Hao, and X.G. Fang, Effects of Ni Levels on Microstructure and Mechanical Properties of Mg-Ni-Y Alloy Reinforced with LPSO Structure, J. Alloys Comp., 2017, 726, p 276–283CrossRefGoogle Scholar
  14. 14.
    J. Wang, J.S. Zhang, X.M. Zong, C.X. Xu, Z.Y. You, and K.B. Nie, Effect of Ca on the Formation of LPSO Phase and Mechanical Propertical of Mg-Zn-Y-Mn Alloy, Mater. Sci. Eng. A, 2015, 648, p 37–40CrossRefGoogle Scholar
  15. 15.
    Z.W. Geng, D.H. Xiao, and L. Chen, Microstructure, Mechanical Properties, and Corrosion Behavior of Degradable Mg-Al-Cu-Zn-Gd Alloys, J. Alloys Comp., 2016, 686, p 145–152CrossRefGoogle Scholar
  16. 16.
    L. Yan, H.S. Wu, and Y. Yan, Application of Fine Managed Pressure Drilling Technique in Complex Wells with Both Blowout and Lost Circulation Risks, Nat. Gas Ind. B, 2015, 2, p 192–197CrossRefGoogle Scholar
  17. 17.
    Y.Z. Zhang, X.Y. Wang, Y.F. Kuang, B.S. Liu, K.W. Zhang, and D.Q. Fang, Enhanced Mechanical Properties and Degradation Rate of Mg-3Zn-1Y Based Alloy by Cu Addition for Degradable Fracturing Ball Applications, Mater. Lett., 2017, 195, p 194–197CrossRefGoogle Scholar
  18. 18.
    N. Hort, Y. Huang, D. Fechner, M. Stömer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U. Kainer, and F. Feyerabend, Magnesium Alloys as Implant Materials-Principles of Property Design for Mg-RE Alloys, Acta Biomater., 2010, 6, p 1714–1725CrossRefGoogle Scholar
  19. 19.
    J.H. Liu, Y.W. Song, J.C. Chen, P. Chen, D.Y. Shan, and E.H. Han, The Special Role of Anodic Second Phases in the Micro-galvanic Corrosion of EW75 Mg Alloy, Electro. Acta, 2016, 189, p 190–195CrossRefGoogle Scholar
  20. 20.
    Y.W. Song, D.Y. Shan, and E.H. Han, Pitting Corrosion of a Rare Earth Mg Alloy GW93, J. Mater. Sci. Technol., 2017, 33, p 954–960CrossRefGoogle Scholar
  21. 21.
    J. Chen, Y.W. Song, D.Y. Shan, and E.H. Han, Study of the Corrosion Mechanism of the In Situ Grown Mg–Al–CO32-Hydrotalcite Film on AZ31 Alloy, Corros. Sci., 2012, 65, p 268–277CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Zhenhua Han
    • 1
    Email author
  • Kai Zhang
    • 2
  • Jun Yang
    • 3
  • Ran Wei
    • 4
  • Yixin Liu
    • 2
  • Changjun Zhang
    • 2
  1. 1.School of Material Science and EngineeringXi’an University of TechnologyXi’anChina
  2. 2.School of Material Science and EngineeringChang’an UniversityXi’anChina
  3. 3.Changqing Downhole Technology CompanyChuanqing Drilling Engineering Co., LtdXi’anChina
  4. 4.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations