Advertisement

Experimental and Numerical Investigation of PZT Response in Composite Structures with Variable Degradation Levels

  • Vittorio MemmoloEmail author
  • Hassan Elahi
  • Marco Eugeni
  • Ernesto Monaco
  • Fabrizio Ricci
  • Michele Pasquali
  • Paolo Gaudenzi
Article
  • 47 Downloads

Abstract

Commercial aerospace vehicles have been increasingly demanding to withstand harsh conditions with low-weight material, i.e., composites. Unfortunately, low-velocity impacts strongly affect their performance. Structural health monitoring with permanently attached sensors allows achieving cost-effective maintenance and tearing down knockdown factors. However, the degradation of transducers adopted for online detection of damage negatively affects the diagnosis. That deterioration is addressed in this work with the electromechanical impedance approach employed at relatively low ultrasonic frequencies. Several degradation conditions are investigated with experimental and numerical simulations. The results demonstrate how the self-diagnosis approach detects pure sensor failures without any structural dependence. However, self-detection of the mixed mode of failures is challenging due to the opposite effect that different types of failure return. Numerical simulations provide a spectral response in compliance with measurements. On top of that, numerical results demonstrate that the combination of different types of damage may induce missed detection. That is where a multi-parameter self-diagnosis approach may further improve the overall monitoring system.

Keywords

aerospace structures composites damage detection electromechanical impedance numerical simulation piezoelectric material self-diagnosis 

Notes

Acknowledgments

The authors gratefully acknowledge the support of this research by Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. CS2-REG-GAM–2014-2015-01).

References

  1. 1.
    V. Memmolo, F. Ricci, N.D. Boffa, L. Maio, and E. Monaco, Structural Health Monitoring in Composites Based on Probabilistic Reconstruction Techniques, Procedia Eng., 2016, 167, p 48–55CrossRefGoogle Scholar
  2. 2.
    L. Maio, V. Memmolo, S. Boccardi, C. Meola, F. Ricci, N.D. Boffa, and E. Monaco, Ultrasonic and IR Thermographic Detection of a Defect in a Multilayered Composite Plate, Procedia Eng., 2016, 167, p 71–79CrossRefGoogle Scholar
  3. 3.
    L. Cot, Y. Wang, C. Bts, and C. Gogu, Scheduled and shm structural airframe maintenance applications using a new probabilistic model, in Proceedings of 7th European Workshop on Structural Health Monitoring, EWSHM 2014—2nd European Conference of the Prognostics and Health Management (PHM) Society, ed. by Le Cam, Vincent (Nantes, 2014), pp. 2306–2313Google Scholar
  4. 4.
    H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, D.W. Stinemates, B.R. Nadler, and J.J. Czarnecki, A Review of Structural Health Monitoring Literature: 1996–2001 (Los Alamos National Laboratory, USA, Approved for public release as LA-13976-MS, 2004)Google Scholar
  5. 5.
    D. Balageas, C.P. Fritzen, and A. Guemes, Structural Health Monitoring, Wiley, New York, 2010Google Scholar
  6. 6.
    Z. Su, L. Ye, and Y. Lu, Guided Lamb Waves for Identification of Damage in Composite Structures: A Review, J. Sound Vib., 2006, 295(3), p 753–780CrossRefGoogle Scholar
  7. 7.
    M. Mitra and S. Gopalakrishnan, Guided Wave Based Structural Health Monitoring: A Review, Smart Mater. Struct., 2016, 25(5), p 053001CrossRefGoogle Scholar
  8. 8.
    V. Memmolo, E. Monaco, N.D. Boffa, L. Maio, and F. Ricci, Guided Wave Propagation and Scattering for Structural Health Monitoring of Stiffened Composites, Compos. Struct., 2018, 184, p 568–580CrossRefGoogle Scholar
  9. 9.
    L. Maio, F. Ricci, V. Memmolo, E. Monaco, and N.D. Boffa, Application of Laser Doppler Vibrometry for Ultrasonic Velocity Assessment in a Composite Panel with Defect, Compos. Struct., 2018, 184, p 1030–1039CrossRefGoogle Scholar
  10. 10.
    K. Neuschwander, J. Moll, V. Memmolo, M. Schmidt, and M. Bücker, Simultaneous Load and Structural Monitoring of a Carbon Fiber Rudder Stock: Experimental Results from a Quasi-static Tensile Test, J. Intell. Mater. Syst. Struct., 2019, 30(2), p 272–282CrossRefGoogle Scholar
  11. 11.
    G.F. Gomes, Y.A.D. Mendéz, P.D.S.L. Alexandrino, S.S. da Cunha, and A.C. Ancelotti, The Use of Intelligent Computational Tools for Damage Detection and Identification with an Emphasis on Composites—A Review, Compos. Struct., 2018, 196, p 44–54CrossRefGoogle Scholar
  12. 12.
    V. Memmolo, N. Pasquino, and F. Ricci, Experimental Characterization of a Damage Detection and Localization System for Composite Structures, Measurement, 2018, 129, p 381–388CrossRefGoogle Scholar
  13. 13.
    V. Memmolo, Y.J. Park, M. Lilov, E. Monaco, and F. Ricci, Preliminary Acousto-ultrasonic Investigation for Multi-parameter Transducer Self-Diagnostic System in Composites, Compos. Struct., 2018, 202, p 1229–1238CrossRefGoogle Scholar
  14. 14.
    L. Maio, Electromechanical impedance measurement for de-icing applications based on piezoelectric actuators, Proceedings of 2019 IEEE International Workshop on Metrology for Aerospace (2019)Google Scholar
  15. 15.
    T. Siebel and M. Lilov, Experimental Investigation on Improving Electromechanical Impedance Based Damage Detection by Temperature Compensation, Key Eng. Mater., 2013, 569–570, p 1132–1139CrossRefGoogle Scholar
  16. 16.
    I. Mueller, Inspection of Piezoceramic Transducers Used for Structural Health Monitoring, PhD thesis (Siegen, 2017)Google Scholar
  17. 17.
    F. Zahedi and H. Huang, Time–Frequency Analysis of Electro-mechanical Impedance (EMI) Signature for Physics-Based Damage Detections Using Piezoelectric Wafer Active Sensor (PWAS), Smart Mater. Struct., 2017, 26(5), p 055010CrossRefGoogle Scholar
  18. 18.
    I. Mueller and C.-P. Fritzen, Inspection of Piezoceramic Transducers Used for Structural Health Monitoring, Materials, 2017, 10(1), p 71CrossRefGoogle Scholar
  19. 19.
    T.C. Huynh, N.L. Dang, and J.T. Kim, Advances and Challenges in Impedance-Based Structural Health Monitoring, Struct. Monit. Maint., 2017, 4(4), p 301–329Google Scholar
  20. 20.
    V. Giurgiutiu, C. Postolache, and M. Tudose, Radiation, Temperature, and Vacuum Effects on Piezoelectric Wafer Active Sensors, Smart Mater. Struct., 2016, 25, p 035024CrossRefGoogle Scholar
  21. 21.
    G. Park, C.R. Farrar, F.L. di Scalea, and S. Coccia, Performance Assessment and Validation of Piezoelectric Active-Sensors in Structural Health Monitoring, Smart Mater. Struct., 2006, 15(6), p 1673CrossRefGoogle Scholar
  22. 22.
    Non destructive evaluation (NDE) system, reliability assessment, MIL-HDBK 1823a (Department of Defence, Handbook, 2004)Google Scholar
  23. 23.
    H. Elahi, Z. Butt, M. Eugnei, P. Gaudenzi, and A. Israr, Effects of Variable Resistance on Smart Structures of Cubic Reconnaissance Satellites in Various Thermal and Frequency Shocking Conditions, J. Mech. Sci. Technol., 2017, 31(9), p 4151–4157CrossRefGoogle Scholar
  24. 24.
    H. Elahi, M. Eugeni, P. Gaudenzi, M. Gul, and R.F. Swati, Piezoelectric Thermo Electromechanical Energy Harvester for Reconnaissance Satellite Structure, Microsyst. Technol., 2019, 25(2), p 665–672CrossRefGoogle Scholar
  25. 25.
    L. Maio, S. Ameduri, A. Concilio, E. Monaco, V. Memmolo, and F. Ricci, Development of a de-icing system for aerodynamic surfaces based on ultrasonic waves, Proceedings of SPIE—The International Society for Optical Engineering (2018), p. 10600, Art. No. 106000HGoogle Scholar
  26. 26.
    H. Elahi, M. Eugeni, and P. Gaudenzi, Electromechanical degradation of piezoelectric patches, in Analysis and Modelling of Advanced Structures and Smart Systems, H. Altenbach, E. Carrera, C. Kulikov, Eds., Springer, Berlin, 2018, pp. 35–44CrossRefGoogle Scholar
  27. 27.
    H. Elahi, A. Israr, R.F. Swati, H.M. Khan, and A. Tamoor, Stability of piezoelectric material for suspension applications, in Proceedings of Fifth International Conference on Aerospace Science & Engineering (2017), pp. 1–5Google Scholar
  28. 28.
    P. Gaudenzi, Smart Structures: Physical Behaviour, Mathematical Modelling and Applications, Wiley, New York, 2009CrossRefGoogle Scholar
  29. 29.
    J. Moll, Damage Detection in Grouted Connections Using Electromechanical Impedance Spectroscopy, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2019, 233(3), p 947–950CrossRefGoogle Scholar
  30. 30.
    P. Gaudenzi and K.J. Bathe, An Iterative Finite Element Procedure for the Analysis of Piezoelectric Continua, J. Intell. Mater. Syst. Struct., 1995, 6(2), p 266–273CrossRefGoogle Scholar
  31. 31.
    Y.Y, Lim and C.K. Soh, Towards More Accurate Numerical Modeling of Impedance Based High Frequency Harmonic Vibration, Smart Mater. Struct., 2014, 23(3), Art. No. 035017Google Scholar
  32. 32.
    F. Boukazouha, G. Poulin-Vittrant, L.P. Tran-Huu-Hue, M. Bavencoffe, F. Boubenider, M. Rguiti, and M. Lethiecq, A Comparison of 1D Analytical Model and 3D Finite Element Analysis with Experiments for a Rosen-Type Piezoelectric Transformer, Ultrasonics, 2015, 60, p 41–50CrossRefGoogle Scholar
  33. 33.
    S. Peng, X. Zheng, J. Sun, Y. Zhang, L. Zhou, J. Zhao, and K. Peng, Modeling of a Micro-cantilevered Piezo-actuator Considering the Buffer Layer and Electrodes, J. Micromech. Microeng., 2012, 22(6), Art. No. 065005Google Scholar
  34. 34.
    W. Yan, W.C. Li, J. Wang, and W. Chen, High-frequency EMI signatures for damaged plates using finite element method, in Proceedings of 2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, pp. 391–394Google Scholar
  35. 35.
    Piezoceramic material general description, Physik Instrumente (PI) Ceramic GmbH & Co, Germany, promotional literature, undated. https://www.piceramic.com/en/
  36. 36.
    R.F. Swati, L.H. Wen, H. Elahi, A.A. Khan, and S. Shad, Extended Finite Element Method (XFEM) Analysis of Fiber Reinforced Composites for Prediction of Micro-crack Propagation and Delaminations in Progressive Damage: A Review, Microsyst. Technol., 2019, 25(3), p 747–763CrossRefGoogle Scholar
  37. 37.
    H. Elahi, M. Eugeni, and P. Gaudenzi, A Review on Mechanisms for Piezoelectric-Based Energy Harvesters, Energies, 2018, 11(7), Art. No. 1850Google Scholar
  38. 38.
    R.F. Swati, H. Elahi, L.H. Wen, A.A. Khan, S. Shad, and M.R. Mughal, Investigation of Tensile and In-Plane Shear Properties of Carbon Fiber Reinforced Composites with and Without Piezoelectric Patches for Micro-crack Propagation Using Extended Finite Element Method, Microsyst. Technol., 2018.  https://doi.org/10.1007/s00542-018-4120-y Google Scholar
  39. 39.
    D. Wang, H. Song, and H. Zhu, Numerical and Experimental Studies on Damage Detection of a Concrete Beam Based on PZT Admittances and Correlation Coefficient, Constr. Build. Mater., 2013, 49, p 564–574CrossRefGoogle Scholar
  40. 40.
    G.C. Pardoen, Effect of Delamination on the Natural Frequencies of Composite Laminates, J. Compos. Mater., 1989, 23(12), p 1200–1215CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Vittorio Memmolo
    • 1
    Email author
  • Hassan Elahi
    • 2
  • Marco Eugeni
    • 2
  • Ernesto Monaco
    • 1
  • Fabrizio Ricci
    • 1
  • Michele Pasquali
    • 2
  • Paolo Gaudenzi
    • 2
  1. 1.Department of Industrial Engineering – Aerospace SectionUniversità degli Studi di Napoli Federico IINaplesItaly
  2. 2.Department of Mechanical and Aerospace EngineeringUniversità degli Studi di Roma La SapienzaRomeItaly

Personalised recommendations