Advertisement

Influence of Multidirectional Forging on Microstructural, Mechanical, and Corrosion Behavior of Mg-Zn Alloy

  • S. Ramesh
  • Gajanan AnneEmail author
  • H. Shivananda Nayaka
  • Sandeep Sahu
  • M. R. Ramesh
Article
  • 66 Downloads

Abstract

Multidirectional forging (MDF) was applied to Mg-6%Zn alloy up to 5 passes successfully at 280 °C. MDF-processed materials were characterized using optical microscope, scanning electron microscope, electron backscatter diffraction, transmission electron microscope, and x-ray diffraction. Obtained results showed a significant reduction in grain size (up to 3.8 μm) having a large fraction of high-angle grain boundaries after 5 passes of MDF process. Maximum tensile strength of 230 MPa was achieved for 5-pass MDF-processed Mg-6%Zn alloy which is about ~ 2.0 times higher in comparison with that of homogenized alloy (117 MPa) and was attributed to higher dislocations density and grain refinement. Corrosion behavior of the alloy was investigated in 0.1 M NaCl solution using potentiodynamic polarization test, electrochemical impedance spectra analysis, and immersion tests. It was found that the corrosion rate of 5-pass MDF sample improved (0.34 mm/year) ~2.5 times in comparison with that of homogenized Mg-6%Zn alloy (0.86 mm/year) due to fine grain structure, which creates more grain boundaries that act as a corrosion barrier.

Keywords

EBSD grain refinement mechanical properties Mg-6%Zn alloy multidirectional forging potentiodynamic polarization 

Notes

Acknowledgments

The authors gratefully acknowledge Exclusive Magnesium Private Limited, Hyderabad, India, for their help with the processing of Mg-Zn alloy and gratefully appreciate Dr. Shashank Shekhar, Materials Science and Engineering, Indian Institute of Technology, Kanpur, for his support and interaction in extending electron backscattered diffraction (EBSD) facility.

References

  1. 1.
    S. Cai, T. Lei, N. Li, and F. Feng, Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys, Mater. Sci. Eng. C, 2012, 32(8), p 2570–2577Google Scholar
  2. 2.
    F. Pan, M. Yang, and X. Chen, A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys, J. Mater. Sci. Technol., 2016, 32(12), p 1211–1221Google Scholar
  3. 3.
    H. Fu, B. Ge, Y. Xin, R. Wu, C. Fernandez, J. Huang, and Q. Peng, Achieving High Strength and Ductility in Magnesium Alloys via Densely Hierarchical Double Contraction Nanotwins, Nano Lett., 2017, 17(10), p 6117–6124Google Scholar
  4. 4.
    A. Imandoust, C.D. Barrett, T. Al-Samman, K.A. Inal, and H. El Kadiri, A Review on the Effect of Rare-Earth Elements on Texture Evolution During Processing Of Magnesium Alloys, J. Mater. Sci., 2017, 52(1), p 1–29Google Scholar
  5. 5.
    G. Anne, M.R. Ramesh, H.S. Nayaka, S.B. Arya, and S. Sahu, Development and Properties Evaluation of Mg–6% Zn/Al Multilayered Composites Processed by Accumulative Roll Bonding, J. Mater. Res., 2017, 32(12), p 2249–2257Google Scholar
  6. 6.
    B.L. Mordike and T. Ebert, Magnesium: Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302(1), p 37–45Google Scholar
  7. 7.
    X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Improvement of Formability of Mg–Al–Zn Alloy Sheet at Low Temperatures Using Differential Speed Rolling, J. Alloys Compd., 2009, 470(1), p 263–268Google Scholar
  8. 8.
    K.R. Gopi, H.S. Nayaka, and S. Sahu, Corrosion Behavior of ECAP-Processed AM90 Magnesium Alloy, Arab. J. Sci. Eng., 2018, 43(9), p 4871–4878Google Scholar
  9. 9.
    K.R. Gopi, H.S. Nayaka, and S. Sahu, Wear Properties of ECAP-Processed AM80 Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26(7), p 3399–3409Google Scholar
  10. 10.
    G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium, Corros. Sci., 2012, 58, p 145–151Google Scholar
  11. 11.
    A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann. Manuf. Technol., 2008, 57(2), p 716–735Google Scholar
  12. 12.
    L.S. Toth and C. Gu, Ultrafine-Grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14Google Scholar
  13. 13.
    C. Cai, S. LingHui, D. XingHao, and W. BaoLin, Enhanced Mechanical Property of AZ31B Magnesium Alloy Processed by Multi-directional Forging Method, Mater. Charact., 2017, 131, p 72–77Google Scholar
  14. 14.
    F. Cao, G. Xue, and G. Xu, Superplasticity of a Dual-Phase-Dominated Mg-Li-Al-Zn-Sr Alloy Processed by Multidirectional Forging and Rolling, Mater. Sci. Eng. A, 2017, 704, p 360–374Google Scholar
  15. 15.
    G. Anne, M.R. Ramesh, H.S. Nayaka, S.B. Arya, and S. Sahu, Microstructure Evolution and Mechanical and Corrosion Behavior of Accumulative Roll Bonded Mg-2%Zn/Al-7075 Multilayered Composite, J. Mater. Eng. Perform., 2017, 26(4), p 1726–1734Google Scholar
  16. 16.
    G. Anne, M.R. Ramesh, H.S. Nayaka, S.B. Arya, and S. Sahu, Development and Characteristics of Accumulative Roll Bonded Mg-Zn/Ce/Al Hybrid Composite, J. Alloys Compd., 2017, 724(Supplement C), p 146–154Google Scholar
  17. 17.
    K.R. Gopi, H.S. Nayaka, and S. Sahu, Investigation of Microstructure and Mechanical Properties of ECAP-Processed AM Series Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25(9), p 3737–3745Google Scholar
  18. 18.
    K.R. Gopi, H.S. Nayaka, and S. Sahu, Microstructural Evolution and Strengthening of AM90 Magnesium Alloy Processed by ECAP, Arab. J. Sci. Eng., 2017, 42(11), p 4635–4647Google Scholar
  19. 19.
    H. Miura, M. Kobayashi, and T. Benjanarasuth, Effects of Strain Rate during Multi-Directional Forging on Grain Refinement and Mechanical Properties of AZ80 Mg Alloy, Mater. Trans., 2016, 57(9), p 1418–1423Google Scholar
  20. 20.
    Q. Guo, H.G. Yan, Z.H. Chen, and H. Zhang, Grain Refinement in As-Cast AZ80 Mg Alloy Under Large Strain Deformation, Mater. Charact., 2007, 58(2), p 162–167Google Scholar
  21. 21.
    C.J. Boehlert and K. Knittel, The Microstructure, Tensile Properties, and Creep Behavior of Mg–Zn Alloys Containing 0–4.4 wt.% Zn, Mater. Sci. Eng. A, 2006, 417(1), p 315–321Google Scholar
  22. 22.
    X. Gu, Y. Zheng, Y. Cheng, S. Zhong, and T. Xi, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 30(4), p 484–498Google Scholar
  23. 23.
    H. Haferkamp, Fr.-W. Bach, V. Kaese, K. Mohwald, M. Niemeyer, H. Schreckenberger, Phan-Tan Tai, Magnesium Corrosion—Processes, Protection of Anode and Cathode, Magnesium—Alloys and Technology. 2004, Wiley Publishers.  https://doi.org/10.1002/3527602046.ch14
  24. 24.
    H. Okamoto, Comment on Mg-Zn (Magnesium-Zinc), J. Phase Equilib., 1995, 16(5), p 474–475Google Scholar
  25. 25.
    Y. Yang, P. Wu, Q. Wang, H. Wu, Y. Liu, Y. Deng, Y. Zhou, and C. Shuai, The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting, Materials, 2016, 9(4), p 216Google Scholar
  26. 26.
    C. Shuai, L. Liu, M. Zhao, P. Feng, Y. Yang, W. Guo, C. Gao, and F. Yuan, Microstructure, Biodegradation, Antibacterial and Mechanical Properties of ZK60-Cu Alloys Prepared by Selective Laser Melting Technique, J. Mater. Sci. Technol., 2018, 34(10), p 1944–1952Google Scholar
  27. 27.
    Y. Yang, X. Guo, C. He, C. Gao, and C. Shuai, Regulating Degradation Behavior by Incorporating Mesoporous Silica for Mg Bone Implants, ACS Biomater. Sci. Eng., 2018, 4(3), p 1046–1054Google Scholar
  28. 28.
    C. Gao, S. Peng, P. Feng, and C. Shuai, Bone Biomaterials and Interactions with Stem Cells, Bone Res., 2017, 5, p 17059Google Scholar
  29. 29.
    G. Anne, S. Ramesh, G. Kumar, S. Sahu, M.R. Ramesh, H.S. Nayaka, and S. Arya, Development, Characterization, Mechanical and Corrosion Behaviour Investigation of Multi-direction Forged Mg–Zn Alloy, Magnes. Technol., 2019, https://doi.org/10.1007/978-3-030-05789-3_50 Google Scholar
  30. 30.
    Y. Chino, M. Kado, and M. Mabuchi, Compressive Deformation Behavior at Room Temperature −773 K in Mg–0.2 mass% (0.035 at.%)Ce Alloy, Acta Mater., 2008, 56(3), p 387–394Google Scholar
  31. 31.
    K.S.V.B.R. Krishna, M. Ashfaq, V. Varun, K. Sivaprasad, K. Venkateswarlu, and S.S.R. Akella, On Plastic Deformation Behavior of Cryorolled AA8090 Alloy, Trans. Indian Inst. Met., 2017, 70(6), p 1463–1475Google Scholar
  32. 32.
    D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin, Enhanced Corrosion Resistance of Mg Alloy ZK60 After Processing by Integrated Extrusion and Equal Channel Angular Pressing, Acta Mater., 2011, 59(15), p 6176–6186Google Scholar
  33. 33.
    R. Udhayan and D.P. Bhatt, On the Corrosion Behaviour of Magnesium and Its Alloys Using Electrochemical Techniques, J. Power Sources, 1996, 63(1), p 103–107Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • S. Ramesh
    • 1
  • Gajanan Anne
    • 2
    Email author
  • H. Shivananda Nayaka
    • 1
  • Sandeep Sahu
    • 3
  • M. R. Ramesh
    • 1
  1. 1.Department of Mechanical EngineeringNational Institute of Technology KarnatakaSurathkalIndia
  2. 2.Department of Mechanical EngineeringShri Madhwa Vadiraja Institute of Technology and ManagementUdupiIndia
  3. 3.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations