Advertisement

The Effects of Sc Addition on the Microstructure and Mechanical Properties of Be-Al Alloy Fabricated by Induction Melting

  • Liangbo YuEmail author
  • Wenyuan Wang
  • Jing Wang
  • Bin Su
  • Xianfeng Dong
  • Zhenhong Wang
Article
  • 19 Downloads

Abstract

This study investigated the alloying effects of 0.4 wt.% Sc on the microstructure, mechanical properties, and fracture behavior of a cast Be-Al alloy prepared by vacuum induction melting. The micromechanics of Sc-containing secondary-phase particles (SPs) were characterized by nanoindentation, and the fracture behavior of the alloy was investigated via tensile fractography and optical metallography. The addition of 0.4 wt.% Sc significantly modified the alloy microstructure by decreasing the secondary dendritic arm spacing (SDAS), weakening the dendritic structure of Be, and producing an equiaxed/cellular alloy microstructure with refined Be grains. Sc alloying increased the Vickers hardness by 36%, elastic modulus by 28%, yield strength by 35%, ultimate strength by 52%, but decreased the elongation from 3.6 to 2.9%. Sc-containing SPs had a higher elastic modulus, yield strength, microhardness, and a lower plasticity index than the Be and Al matrices, resulting in interface separation during the fracture process. SPs located at the Be/Al interfaces did not act as microcrack sources for the matrices, whereas highly faceted SPs within the Be grains induced microcrack formation and decreased the elongation. The failure mode of the cast Be-Al-0.4Sc alloy still involved the brittle cleavage failure of Be regions and ductile dimple failure of Al regions, which was not the case with the cast Be-Al alloy.

Keywords

Be-Al alloy mechanical properties microstructure nanoindentation secondary phase 

Notes

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51504226, 51601178, and 51701195). The authors express their sincere gratitude to Dr. Hefei Ji, Dr. Bingqing Li, and Dr. Qifa Pan for their assistance with instrumental characterizations.

References

  1. 1.
    V.C. Nardone and T.J. Garosshen, Evaluation of the Tensile and Fatigue Behaviour of Ingot Metallurgy Beryllium/Aluminium Alloys, J. Mater. Sci., 1997, 32(15), p 3975–3985.  https://doi.org/10.1023/A:1018677102160 CrossRefGoogle Scholar
  2. 2.
    F. Contreras, E.A. Trillo, and L.E. Murr, Friction-Stir Welding of a Beryllium-Aluminum Powder Metallurgy Alloy, J. Mater. Sci., 2002, 37(1), p 89–99.  https://doi.org/10.1023/A:1013193708743 CrossRefGoogle Scholar
  3. 3.
    L.V. Molchanova and V.N. Ilyushinb, Alloying of Aluminum-Beryllium Alloys, Russ. Metall. (Metally), 2013, 2103(1), p 84–86.  https://doi.org/10.1134/S0036029513010096 Google Scholar
  4. 4.
    L. Yu, J. Wang, F. Qu, M. Wang, W. Wang, Y. Bao, and X. Lai, Effects of Scandium Addition on Microstructure, Mechanical and Thermal Properties of Cast Be-Al Alloy, J. Alloys Compd., 2018, 737, p 655–664.  https://doi.org/10.1016/j.jallcom.2017.12.117 CrossRefGoogle Scholar
  5. 5.
    F. Pan, M. Yang, and L. Cheng, Effects of Minor Scandium on As-Cast Microstructure, Mechanical Properties and Casting Fluidity of ZA84 Magnesium Alloy, Mater. Sci. Eng., A, 2010, 527(4–5), p 1074–1081.  https://doi.org/10.1016/j.msea.2009.09.025 CrossRefGoogle Scholar
  6. 6.
    L.V. Molchanova, Effect of Scandium on the Phase Composition and Mechanical Properties of ABM-Type Alloys, Russ. Metall. (Metally), 2010, 2010(9), p 815–818.  https://doi.org/10.1134/S0036029510090107 CrossRefGoogle Scholar
  7. 7.
    L. Yu, J. Wang, Z. Wang, F. Qu, F. Zhou, and X. Lai, Sc and Sc-Zr Effects on Microstructure and Mechanical Properties of Be-Al Alloy, Mater. Sci. Technol., 2018, 34(4), p 480–486.  https://doi.org/10.1080/02670836.2017.1407555 CrossRefGoogle Scholar
  8. 8.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583.  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  9. 9.
    H. Okamoto, Be-Sc (Beryllium-Scandium), J. Phase Equilib. Diffus., 2008, 29(5), p 465–465.  https://doi.org/10.1007/s11669-008-9362-4 CrossRefGoogle Scholar
  10. 10.
    J.L. Murray, The Al-Sc (Aluminum-Scandium) System, J. Phase Equilib., 1998, 19(4), p 380–384.  https://doi.org/10.1361/105497198770342120 CrossRefGoogle Scholar
  11. 11.
    V. Raghavan, Al-Be-Sc (Aluminum-Beryllium-Scandium), J. Phase Equilib. Diffus., 2009, 30(2), p 178.  https://doi.org/10.1007/s11669-009-9482-5 CrossRefGoogle Scholar
  12. 12.
    J. Røyset and N. Ryum, Scandium in Aluminium Alloys, Int. Mater. Rev., 2005, 50(1), p 19–44.  https://doi.org/10.1179/174328005X14311 CrossRefGoogle Scholar
  13. 13.
    C.F. Mallinson, J.E. Castle, and J.F. Watts, The electron spectra of beryllium and beryllium oxide: an XPS, X-AES and AES study, Surface and Interface Analysis., 2014, 46(10–11), p 989–992.  https://doi.org/10.1002/sia.5377 CrossRefGoogle Scholar
  14. 14.
    J. Zähr, S. Oswald, M. Türpe, H.J. Ullrich, and U. Füssel, Characterisation of Oxide and Hydroxide Layers on Technical Aluminum Materials Using XPS, Vacuum, 2012, 86(9), p 1216–1219.  https://doi.org/10.1016/j.vacuum.2011.04.004 CrossRefGoogle Scholar
  15. 15.
    S.W. King, R.J. Nemanich, and R.F. Davis, Photoemission Investigation of the Schottky Barrier at the Sc/3C-SiC (111) Interface, Phys. Status Solidi B, 2015, 252(2), p 391–396.  https://doi.org/10.1002/pssb.201451340 CrossRefGoogle Scholar
  16. 16.
    J.K. Gimzewski, S.A. Affrossman, M.T. Gibson, L.M. Watson, and D.J. Fabian, Oxidation of Scandium by Oxygen and Water Studied by XPS, Surf. Sci., 1979, 80, p 298–305.  https://doi.org/10.1016/0039-6028(79)90690-3 CrossRefGoogle Scholar
  17. 17.
    G. Krill, J.P. Kappler, M.F. Ravet, A. Amamou, and A. Meyer, Study and Evolution with Temperature of the Intermediate Valence State in CeBe13, J. Phys. F Met. Phys., 1979, 10(5), p 1031–1042.  https://doi.org/10.1088/0305-4608/10/5/031 CrossRefGoogle Scholar
  18. 18.
    L. Yu, W. Wang, B. Su, Z. Wang, F. Qu, H. Wu, Z. Pu, X. Meng, Q. Wang, J. Wang, and X. Lai, Characterizations on the Microstructure and Micro-Mechanics of Cast Be-Al-0.4Sc-0.4Zr Alloy Prepared by Vacuum Induction Melting, Mater. Sci. Eng. A, 2019, 744, p 512–524.  https://doi.org/10.1016/j.msea.2018.12.027 CrossRefGoogle Scholar
  19. 19.
    J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists, 2nd ed., Springer, Berlin, 1981,  https://doi.org/10.1007/978-1-4613-3273-2 CrossRefGoogle Scholar
  20. 20.
    T. Öz, E. Karaköse, and M. Keskin, Impact of Beryllium Additions on Thermal and Mechanical Properties of Conventionally Solidified and Melt-Spun Al-4.5 wt.%Mn-xwt.%Be (x =0, 1, 3, 5) Alloys, Mater. Des., 2013, 50, p 399–412.  https://doi.org/10.1016/j.matdes.2013.03.024 CrossRefGoogle Scholar
  21. 21.
    S. Riva, K.V. Yusenko, N.P. Lavery, D.J. Jarvis, and S.G.R. Brown, The scandium effect in multicomponent alloys, Int. Mater. Rev., 2016, 61(3), p 203–228.  https://doi.org/10.1080/09506608.2015.1137692 CrossRefGoogle Scholar
  22. 22.
    V.V. Zakharov, Combined alloying of aluminum alloys with scandium and zirconium, Met. Sci. Heat Treat., 2014, 56(5–6), p 281–286.  https://doi.org/10.1007/s11041-014-9746-5 CrossRefGoogle Scholar
  23. 23.
    D.W. Wheeler and S.T. Morris, Micro-mechanical characterisation of uranium, J. Nucl. Mater., 2009, 385, p 4.  https://doi.org/10.1016/j.jnucmat.2008.09.035 CrossRefGoogle Scholar
  24. 24.
    D.H. Carter and M.A.M. Bourke, Neutron diffraction study of the deformation behavior of beryllium–aluminum composites, Acta Mater., 2000, 48(11), p 2885–2900.  https://doi.org/10.1016/S1359-6454(00)00087-2 CrossRefGoogle Scholar
  25. 25.
    L. Yu, Z. Wang, J. Wu, X. Meng, and X. Lai, Microstructure and Properties of Vacuum Cast Sc-Containing Be-Al Alloys, Int. J. Metalcast., 2018, 1, p 1–12.  https://doi.org/10.1007/s40962-018-0249-9 Google Scholar
  26. 26.
    B.J. Briscoe, L. Fiori, and E. Pelillo, Nano-Indentation of Polymeric Surfaces, J. Phys. D Appl. Phys., 1998, 31(19), p 2395–2405.  https://doi.org/10.1088/0022-3727/31/19/006 CrossRefGoogle Scholar
  27. 27.
    A.C. Fischer-Cripps, Nanoindentation, 3rd ed., Springer, Berlin, 2011,  https://doi.org/10.1007/978-1-4419-9872-9 CrossRefGoogle Scholar
  28. 28.
    Y. Wang, J. Yang, and Y. Bao, Effects of Non-metallic Inclusions on Machinability of Free-Cutting Steels Investigated by Nano-Indentation Measurements, Metall. Mater. Trans. A, 2015, 46A, p 12.  https://doi.org/10.1007/s11661-014-2596-3 Google Scholar
  29. 29.
    H.J. Albrecht, T. Hannach, A. Hase, A. Juritza, K. Muller, and W.H. Muller, Nanoindentation: A Suitable Tool to Determine Local Mechanical Properties in Microelectronic Packages And Materials?, Arch. Appl. Mech., 2005, 74, p 728–738.  https://doi.org/10.1007/s00419-005-0394-5 CrossRefGoogle Scholar
  30. 30.
    Z.H. Feng, C.Q. Xia, Y.K. Zhou, X.J. Jiang, X.Y. Zhang, B. Pan, M.Z. Ma, and R.P. Liu, Microstructure and Mechanical Properties of Hot-Rolled Zr-3Al-χBe Alloys, Mater. Sci. Eng. A, 2015, 641, p 194–200.  https://doi.org/10.1016/j.msea.2015.06.017 CrossRefGoogle Scholar
  31. 31.
    V.C. Nardone and K.M. Prewo, On the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Composites, Scr. Metall., 1986, 20(1), p 43–48.  https://doi.org/10.1016/0036-9748(86)90210-3 CrossRefGoogle Scholar
  32. 32.
    V.C. Nardone, Assessment of Models Used to Predict the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Alloys, Scr. Metall., 1987, 21(10), p 1313–1318.  https://doi.org/10.1016/0036-9748(87)90105-0 CrossRefGoogle Scholar
  33. 33.
    Z. Yang, W. Lu, J. Qin, and D. Zhang, Microstructure and Tensile Properties of In Situ Synthesized (TiC + TiB + Nd2O3)/Ti-Alloy Composites at Elevated Temperature, Mater. Sci. Eng. A, 2006, 425(1–2), p 185–191.  https://doi.org/10.1016/j.msea.2006.03.063 CrossRefGoogle Scholar
  34. 34.
    J. She, Y. Zhan, and C. Li, Novel In Situ Synthesized Zirconium Matrix Composites Reinforced with ZrC Particles, Mater. Sci. Eng. A, 2010, 527(23), p 6454–6458.  https://doi.org/10.1016/j.msea.2010.06.067 CrossRefGoogle Scholar
  35. 35.
    J.C. Halpin, Stiffness and Expansion Estimates for Oriented Short Fiber Composites, J. Compos. Mater., 1969, 3(4), p 732–734.  https://doi.org/10.1177/002199836900300419 CrossRefGoogle Scholar
  36. 36.
    J.C. Halpin and R.L. Thomas, Ribbon Reinforcement of Composites, J. Compos. Mater., 1968, 2(4), p 488–497.  https://doi.org/10.1177/002199836800200409 CrossRefGoogle Scholar
  37. 37.
    J. Kadkhodapour, A. Butz, and S.Z. Rad, Mechanisms of Void Formation During Tensile Testing in a Commercial, Dual-Phase Steel, Acta Mater., 2011, 59(7), p 2575–2588.  https://doi.org/10.1016/j.actamat.2010.12.039 CrossRefGoogle Scholar
  38. 38.
    J. Larose and J.J. Lewandowski, Pressure Effects on Flow and Fracture of Be-Al Alloys, Metall. Mater. Trans. A, 2002, 33(11), p 3555–3564.  https://doi.org/10.1007/s11661-002-0343-7 CrossRefGoogle Scholar
  39. 39.
    K. Venkateswarlu, L.C. Pathak, A.K. Ray, G. Das, P.K. Verma, M. Kumar, and R.N. Ghosh, Microstructure, Tensile Strength and Wear Behaviour of Al-Sc Alloy, Mater. Sci. Eng. A, 2004, 383(2), p 374–380.  https://doi.org/10.1016/j.msea.2004.05.075 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Liangbo Yu
    • 1
    Email author
  • Wenyuan Wang
    • 1
  • Jing Wang
    • 1
  • Bin Su
    • 1
  • Xianfeng Dong
    • 1
  • Zhenhong Wang
    • 1
  1. 1.Institute of Materials ResearchChina Academy of Engineering PhysicsJiangyouChina

Personalised recommendations