Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy

  • Ali Shabani
  • Mohammad Reza ToroghinejadEmail author
  • Ali Shafyei
  • Roland E. Logé


A FeCrCuMnNi high-entropy alloy was produced using vacuum induction melting, starting from high-purity raw materials. The microstructure and mechanical properties of the as-cast FeCrCuMnNi alloy were studied, considering x-ray diffraction (XRD), scanning electron microscopy, and hardness and tensile tests. XRD results revealed the existence of two FCC phases and one BCC phase. Microstructural evaluation illustrated that the as-cast alloy has a typical cast dendritic structure, where dendrite regions (BCC) were enriched in Cr and Fe. Interdendritic regions were saturated with Cu and Ni and revealed G/B(T) {110} 〈111〉 and Brass {110} 〈112〉 as the major texture components. The produced alloy revealed an excellent compromise in mechanical properties due to the mixture of solid solution phases with different structures: 300 HV hardness, 950 MPa ultimate tensile strength and 14% elongation. Microhardness test results also revealed that the BCC phase was the hardest phase. The fracture surface evidenced a typical ductile failure. Furthermore, heat treatment results revealed that phase composition remained stable after annealing up to 650 °C. Phase transformation occurred at higher temperatures in order to form more stable phases; therefore, FCC2 phase grew at the expense of the BCC phase.


FeCrCuMnNi high-entropy alloy heat treatment mechanical properties microstructure SEM 



  1. 1.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93CrossRefGoogle Scholar
  2. 2.
    C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, and L. Wang, Microstructure and Mechanical Properties of AlxSi0.2CrFeCoNiCu1−x High-Entropy Alloys, Mater. Des., 2016, 90, p 601–609CrossRefGoogle Scholar
  3. 3.
    S. Zhao, Y. Shao, X. Liu, N. Chen, H. Ding, and K. Yao, Pseudo-Quinary Ti20Zr20Hf20Be20 (Cu20−x Nix) High Entropy Bulk Metallic Glasses with Large Glass Forming Ability, Mater. Des., 2015, 87, p 625–631CrossRefGoogle Scholar
  4. 4.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRefGoogle Scholar
  5. 5.
    T.S. Reddy, I.S. Wani, T. Bhattacharjee, S.R. Reddy, R. Saha, and P.P. Bhattacharjee, Severe Plastic Deformation Driven Nanostructure and Phase Evolution in a Al0.5CoCrFeMnNi Dual Phase High Entropy Alloy, Intermetallics, 2017, 91, p 150–157CrossRefGoogle Scholar
  6. 6.
    D.G. Shaysultanov, G.A. Salishchev, Y.V. Ivanisenko, S.V. Zherebtsov, M.A. Tikhonovsky, and N.D. Stepanov, Novel Fe36Mn21Cr18Ni15Al10 High Entropy Alloy with bcc/B2 Dual-Phase Structure, J. Alloys Compd., 2017, 705, p 756–763CrossRefGoogle Scholar
  7. 7.
    Z. Li and D. Raabe, Influence of Compositional Inhomogeneity on Mechanical Behavior of an Interstitial Dual-Phase High-Entropy Alloy, Mater. Chem. Phys., 2017, 210, p 29–36CrossRefGoogle Scholar
  8. 8.
    A. Shabani, M.R. Toroghinejad, A. Shafyei, and P. Cavaliere, Effect of Cold-Rolling on Microstructure, Texture and Mechanical Properties of an Equiatomic FeCrCuMnNi High Entropy Alloy, Materialia, 2018, 1, p 175–184CrossRefGoogle Scholar
  9. 9.
    A. Shabani, M.R. Toroghinejad, A. Shafyei, and R.E. Logé, Evaluation of the Mechanical Properties of the Heat Treated FeCrCuMnNi High Entropy Alloy, Mater. Chem. Phys., 2019, 221, p 68–77CrossRefGoogle Scholar
  10. 10.
    Y. Wu, Y. Cai, T. Wang, J. Si, J. Zhu, Y. Wang, and X. Hui, A Refractory Hf25Nb25Ti25Zr25 High-Entropy Alloy with Excellent Structural Stability and Tensile Properties, Mater. Lett., 2014, 130, p 277–280CrossRefGoogle Scholar
  11. 11.
    T.-T. Shun and Y.-C. Du, Microstructure and Tensile Behaviors of FCC Al0.3CoCrFeNi High Entropy Alloy, J. Alloys Compd., 2009, 479(1), p 157–160CrossRefGoogle Scholar
  12. 12.
    J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, and Z. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113CrossRefGoogle Scholar
  13. 13.
    A. Kuznetsov, D. Shaysultanov, N. Stepanov, G. Salishchev, and O. Senkov, Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in As-Cast and Wrought Conditions, Mater. Sci. Eng. A, 2012, 533, p 107–118CrossRefGoogle Scholar
  14. 14.
    Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, and Z. Cao, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200CrossRefGoogle Scholar
  15. 15.
    B. Ren, Z. Liu, D. Li, L. Shi, B. Cai, and M. Wang, Effect of Elemental Interaction on Microstructure of CuCrFeNiMn High Entropy Alloy System, J. Alloys Compd., 2010, 493(1), p 148–153CrossRefGoogle Scholar
  16. 16.
    C. Li, J. Li, M. Zhao, and Q. Jiang, Effect of Alloying Elements on Microstructure and Properties of Multiprincipal Elements High-Entropy Alloys, J. Alloys Compd., 2009, 475(1), p 752–757CrossRefGoogle Scholar
  17. 17.
    B. Ren, Z. Liu, B. Cai, M. Wang, and L. Shi, Aging Behavior of a CuCr2Fe2NiMn High-Entropy Alloy, Mater. Des., 2012, 33, p 121–126CrossRefGoogle Scholar
  18. 18.
    B. Murty, J.-W. Yeh, and S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, London, 2014Google Scholar
  19. 19.
    X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys, Mater. Chem. Phys., 2012, 132(2), p 233–238CrossRefGoogle Scholar
  20. 20.
    A. Takeuchi and A. Inoue, Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys, Mater. Trans. JIM, 2000, 41(11), p 1372–1378CrossRefGoogle Scholar
  21. 21.
    K. Zhang and Z. Fu, Effects of Annealing Treatment on Phase Composition and Microstructure of CoCrFeNiTiAlx High-Entropy Alloys, Intermetallics, 2012, 22, p 24–32CrossRefGoogle Scholar
  22. 22.
    O. Senkov and D. Miracle, A New Thermodynamic Parameter to Predict Formation of Solid Solution or Intermetallic Phases in High Entropy Alloys, J. Alloys Compd., 2016, 658, p 603–607CrossRefGoogle Scholar
  23. 23.
    U. Hsu, U. Hung, J. Yeh, S. Chen, Y. Huang, and C. Yang, Alloying Behavior of Iron, Gold and Silver in AlCoCrCuNi-Based Equimolar High-Entropy Alloys, Mater. Sci. Eng. A, 2007, 460, p 403–408CrossRefGoogle Scholar
  24. 24.
    N. Nayan, G. Singh, S. Murty, A.K. Jha, B. Pant, K.M. George, and U. Ramamurty, Hot Deformation Behaviour and Microstructure Control in AlCrCuNiFeCo High Entropy Alloy, Intermetallics, 2014, 55, p 145–153CrossRefGoogle Scholar
  25. 25.
    Y. Zhuang, H. Xue, Z. Chen, Z. Hu, and J. He, Effect of Annealing Treatment on Microstructures and Mechanical Properties of FeCoNiCuAl High Entropy Alloys, Mater. Sci. Eng. A, 2013, 572, p 30–35CrossRefGoogle Scholar
  26. 26.
    G.D. Sathiaraj, P.P. Bhattacharjee, C.-W. Tsai, and J.-W. Yeh, Effect of Heavy Cryo-Rolling on the Evolution of Microstructure and Texture During Annealing of Equiatomic CoCrFeMnNi High Entropy Alloy, Intermetallics, 2016, 69, p 1–9CrossRefGoogle Scholar
  27. 27.
    P. Bhattacharjee, G. Sathiaraj, M. Zaid, J. Gatti, C. Lee, C.-W. Tsai, and J.-W. Yeh, Microstructure and Texture Evolution During Annealing of Equiatomic CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2014, 587, p 544–552CrossRefGoogle Scholar
  28. 28.
    G.D. Sathiaraj and P.P. Bhattacharjee, Analysis of Microstructure and Microtexture During Grain Growth in Low Stacking Fault Energy Equiatomic CoCrFeMnNi High Entropy and Ni–60 wt.% Co Alloys, J. Alloys Compd., 2015, 637, p 267–276CrossRefGoogle Scholar
  29. 29.
    I.S. Wani, T. Bhattacharjee, S. Sheikh, I.T. Clark, M.H. Park, T. Okawa, S. Guo, P.P. Bhattacharjee, and N. Tsuji, Cold-Rolling and Recrystallization Textures of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy, Intermetallics, 2017, 84(Supplement C), p 42–51CrossRefGoogle Scholar
  30. 30.
    L. Liu, J. Zhu, C. Zhang, J. Li, and Q. Jiang, Microstructure and the Properties of FeCoCuNiSnx High Entropy Alloys, Mater. Sci. Eng. A, 2012, 548, p 64–68CrossRefGoogle Scholar
  31. 31.
    L. Liu, J. Zhu, L. Li, J. Li, and Q. Jiang, Microstructure and Tensile Properties of FeMnNiCuCoSnx High Entropy Alloys, Mater. Des., 2013, 44, p 223–227CrossRefGoogle Scholar
  32. 32.
    Y. Zhang and W. Jie Peng, Microstructural Control and Properties Optimization of High-Entrop Alloys, Proc. Eng., 2012, 27, p 1169–1178CrossRefGoogle Scholar
  33. 33.
    J.H. Hollomon, Tensile Deformation, AIME Trans., 1945, 12(4), p 1–22Google Scholar
  34. 34.
    Y.I. Son, Y.K. Lee, K.-T. Park, C.S. Lee, and D.H. Shin, Ultrafine Grained Ferrite–Martensite Dual Phase Steels Fabricated Via Equal Channel Angular Pressing: Microstructure and Tensile Properties, Acta Mater., 2005, 53(11), p 3125–3134CrossRefGoogle Scholar
  35. 35.
    N. Saeidi, M. Karimi, and M. Toroghinejad, Development of a New Dual Phase Steel with Laminated Microstructural Morphology, Mater. Chem. Phys., 2017, 192, p 1–7CrossRefGoogle Scholar
  36. 36.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Amsterdam, 2004Google Scholar
  37. 37.
    P. Cavaliere, B. Sadeghi, and A. Shabani, Carbon Nanotube Reinforced Aluminum Matrix Composites Produced by Spark Plasma Sintering, J. Mater. Sci., 2017, 52(14), p 8618–8629CrossRefGoogle Scholar
  38. 38.
    A. Shabani and M.R. Toroghinejad, Investigation of the Microstructure and the Mechanical Properties of Cu-NiC Composite Produced by Accumulative Roll Bonding and Coating Processes, J. Mater. Eng. Perform., 2015, 24(12), p 4746–4754CrossRefGoogle Scholar
  39. 39.
    A. Shabani and M.R. Toroghinejad, Study on Texture Evolution and Shear Behavior of an Al/Ni/Cu Composite, J. Mater. Eng. Perform., 2018, 27(11), p 6004–6015CrossRefGoogle Scholar
  40. 40.
    S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, and J.W. Yeh, Microstructure and Properties of Age-Hardenable AlxCrFe 1.5 MnNi 0.5 Alloys, Mater. Sci. Eng. A, 2010, 527(21), p 5818–5825CrossRefGoogle Scholar
  41. 41.
    L. Tsao, C. Chen, and C. Chu, Age Hardening Reaction of the Al0.3CrFe1.5MnNi0.5 High Entropy Alloy, Mater. Des., 2012, 36, p 854–858CrossRefGoogle Scholar
  42. 42.
    R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, Brooks/Cole Engineering Division Monterey, Monterey, 1973Google Scholar
  43. 43.
    K. Zhang, Z. Fu, J. Zhang, J. Shi, W. Wang, H. Wang, Y. Wang, and Q. Zhang, Annealing on the Structure and Properties Evolution of the CoCrFeNiCuAl High-Entropy Alloy, J. Alloys Compd., 2010, 502(2), p 295–299CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Ali Shabani
    • 1
    • 2
  • Mohammad Reza Toroghinejad
    • 1
    Email author
  • Ali Shafyei
    • 1
  • Roland E. Logé
    • 2
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Thermomechanical Metallurgy Laboratory - PX Group ChairEcole Polytechnique Fédérale de Lausanne (EPFL)NeuchâtelSwitzerland

Personalised recommendations