Advertisement

Mechanical Properties and Corrosion Behavior of Spray-Formed 7075 Alloy with One-Stage Aging

  • Ruiming SuEmail author
  • Tong Liu
  • Yingdong Qu
  • Guang Bai
  • Rongde Li
Article
  • 23 Downloads

Abstract

The mechanical properties, corrosion resistance and microstructure of the spray-formed 7075 alloy after one-stage aging treatments were studied by using a tensile tester, hardness tester, slow strain rate test, electrical test, intergranular corrosion test, electrochemical corrosion test, scanning electron microscope and transmission electron microscope. The results show that the strength and hardness of the alloy have double peaks with the one-stage aging treatments. With aging at 120 °C for 24 h (first peak), abundant tiny η′ phases and η phases precipitate in the matrix. The tensile strength of the alloy increases to 760 MPa, and the elongation is 4.8%. After aging at 120 °C for 132 h (second peak), blocky η phases appear. The tensile strength and elongation of the alloy are 757 MPa and 5.9%, respectively. The grain boundary precipitates dissociate, and the precipitate-free zones are widened. The corrosion resistance of the alloy increases.

Keywords

7075 alloy aging intergranular corrosion mechanical properties microstructure spray forming stress corrosion cracking 

Notes

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (51574167), Research Fund for the Doctoral Program of Liaoning Province (20170520337), Program for Innovative Research Team in University of Liaoning Province (LT2015020) and Program for National Key Research and Development Plan (2017YFB1104000).

References

  1. 1.
    J. Adrien, E. Maize, R. Esterez, J.C. Ehrstrom, and T. Warner, Influence of the Thermomechanical Treatment on the Microplastic Behaviour of a Wrought Al-Zn-Mg-Cu Alloys, Acta Mater., 2004, 52, p 1653–1661CrossRefGoogle Scholar
  2. 2.
    T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, and E.J. Lavernia, Precipitation Phenomena in an Ultrafine-Grained Al Alloy, Acta Mater., 2013, 61, p 2163–2217CrossRefGoogle Scholar
  3. 3.
    M. Rajamuthamilselvan and S. Ramanathan, Hot-Working Behavior of 7075 Al/15% SiCp Composites, Mater. Manuf. Process, 2012, 27(3), p 260–266CrossRefGoogle Scholar
  4. 4.
    C. Maranhão, J.P. Davim, and M.J. Jackson, Physical Thermomechanical Behavior in Machining an Aluminium Alloy (7075-O) Using Polycrystalline Diamond Tool, Mater. Manuf. Process, 2011, 26(8), p 1034–1040CrossRefGoogle Scholar
  5. 5.
    R.M. Su, Y.D. Qu, and R.D. Li, Effect of Aging Treatments on the Mechanical and Corrosive Behaviors of Spray-Formed 7075 Alloy, J. Mater. Eng. Perform., 2014, 23, p 3842–3848CrossRefGoogle Scholar
  6. 6.
    R.M. Su, Y.D. Qu, J.H. You, and R.D. Li, Study on a New Retrogression and Re-Aging Treatment of Spray Formed Al-Zn-Mg-Cu Alloy, J. Mater. Res., 2016, 31(5), p 573–579CrossRefGoogle Scholar
  7. 7.
    E. Salamci, Directionality in the Mechanical Properties of Spray Cast and Extruded 7xxxx Series Aluminum Alloys, Turk. J. Eng. Environ. Sci., 2003, 27, p 169–176Google Scholar
  8. 8.
    E. Salamci, Ageing Behaviour of Spray Cast Al-Zn-Mg-Cu Alloys, Turk. J. Eng. Environ. Sci., 2001, 25, p 681–686Google Scholar
  9. 9.
    M. Jeyakumar, S. Kumar, and G.S. Gupta, Microstructure and Properties of the Spray-Formed and Extruded 7075 Al Alloy, Mater. Manuf. Process, 2010, 25(8), p 777–785CrossRefGoogle Scholar
  10. 10.
    T. Marlaud, A. Deschamps, F. Bley, W. Lefebvrec, and B. Baroux, Influence of Alloy Composition and Heat Treatment on Precipitate Composition in Al-Zn-Mg-Cu Alloys, Acta Mater., 2010, 58, p 248–260CrossRefGoogle Scholar
  11. 11.
    T. Marlaud, A. Deschamps, F. Bley, W. Lefebvrec, and B. Baroux, Evolution of Precipitate Microstructures During the Retrogression and re-Ageing Heat Treatment of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2010, 58, p 4814–4826CrossRefGoogle Scholar
  12. 12.
    S.L. George and R.D. Knutsen, Composition Segregation in Semi-Solid Metal Cast AA7075 Aluminium Alloy, J. Mater. Sci., 2012, 47, p 4716–4725CrossRefGoogle Scholar
  13. 13.
    D. Yan, Y. Zhang, H. Wang, and S. Wang, Effect of Ageing Condition on SCC Resistance and Exfoliation Corrosion Behavior of 7475 and 7050 Al Alloys, J. Mater. Eng. Perform., 1992, 2, p 13–16Google Scholar
  14. 14.
    R.G. Song, M.K. Tseng, B.J. Zhang, J. Liu, Z.H. Jin, and K.S. Shin, Grain Boundary Segregation and Hydrogen-Induced Fracture in 7050 Aluminium Alloy, Acta Mater., 1996, 44(8), p 3241–3248CrossRefGoogle Scholar
  15. 15.
    R.G. Song, W. Dietzel, B.J. Zhang, W.J. Liu, M.K. Tseng, and A. Atrens, Stress Corrosion Cracking and Hydrogen Embrittlement of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2004, 52(16), p 4727–4743CrossRefGoogle Scholar
  16. 16.
    G. Silva, B. Rivolta, R. Gerosa, and U. Derudi, Study of the SCC Behavior of 7075 Aluminum Alloy After One-Step Aging at 163 °C, J. Mater. Eng. Perform., 2013, 22, p 210–214CrossRefGoogle Scholar
  17. 17.
    R.E. Ricker, E.U. Lee, R. Taylor, C. Lei, B. Pregger, and E. Lipnickas, Chloride ion Activity and Susceptibility of Al Alloys 7075-T6 and 5083-H131 to Stress Corrosion Cracking, Metall. Mater. Trans. A, 2013, 44, p 1353–1364CrossRefGoogle Scholar
  18. 18.
    J.L. Shi, H.G. Yan, B. Su, J.H. Chen, S.Q. Zhu, and G. Chen, Preparation of a Functionally Gradient Aluminum Alloy Metal Matrix Composite Using the Technique of Spray Deposition, Mater. Manuf. Process, 2011, 26(10), p 1236–1241CrossRefGoogle Scholar
  19. 19.
    M. Jeyakumar, S. Kumar, and G.S. Gupta, The Influence of Processing Parameters on Characteristics of an aluminum Alloy Spray Deposition, Mater. Manuf. Process., 2009, 24(6), p 693–699CrossRefGoogle Scholar
  20. 20.
    C.M. Abreu, M.J. Cristóbal, R. Figueroa, and G. Pena, Wear and Corrosion Performance of Two Different Tempers (T6 and T73) of AA7075 Aluminium Alloy After Nitrogen Implantation, Appl. Surf. Sci., 2015, 327, p 51–61CrossRefGoogle Scholar
  21. 21.
    G.S. Peng, K.H. Chen, S.Y. Chen, and H.C. Fang, Influence of Dual-RRA Temper on the Exfoliation Corrosion and Electrochemical Behavior of Al-Zn-Mg-Cu Alloy, Mater. Corros., 2013, 64, p 284–289CrossRefGoogle Scholar
  22. 22.
    R. Gerosa, B. Rivolta, and U. Derudi, Influence of Ageing on Tensile and Stress Corrosion Cracking Behaviour of 7075 Aluminium Alloy Plates, Int. J. Microstruct. Mater. Prop., 2010, 5(1), p 15–25Google Scholar
  23. 23.
    T. Ramgopal, P.I. Gouma, and G.S. Frankel, Role of Grain-Boundary Precipitates and Solute-Depleted Zone on the Intergranular Corrosion of Aluminum Alloy 7150, Corros., 2002, 58, p 687–697CrossRefGoogle Scholar
  24. 24.
    R.M. Su, Y.D. Qu, R.D. Li, and J.H. You, Influence of RRA Treatment on the Microstructure and Stress Corrosion Cracking Behavior of the Spray-Formed 7075 Alloy, Mater. Sci., 2015, 51, p 372–380CrossRefGoogle Scholar
  25. 25.
    R.M. Su, Y.D. Qu, J.H. You, and R.D. Li, Effect of Pre-Aging on Stress Corrosion Cracking of Spray-Formed 7075 Alloy in Retrogression and Re-Aging, J. Mater. Eng. Perform., 2015, 24, p 4328–4332CrossRefGoogle Scholar
  26. 26.
    R.M. Su, J.H. Su, Y.D. Qu, J.H. You, and R.D. Li, Retrogression on Corrosion Behavior of Spray Formed Al-7075, J. Mater. Res., 2017, 32, p 2621–2627CrossRefGoogle Scholar
  27. 27.
    E.M. Mazzer, C.R.M. Afonso, C. Bolfarini, and C.S. Kiminami, Microstructure Study of Al 7050 Alloy Reprocessed by Spray Forming and Hot-Extrusion and Aged at 121°C, Intermetallics, 2013, 43, p 182–187CrossRefGoogle Scholar
  28. 28.
    A. Hyodo, C. Bolfarini, and T.T. Ishikawa, Chemistry and Tensile Properties of a Recycled AA7050 via Spray Forming and ECAP/E, Mater. Res., 2012, 15, p 739–748CrossRefGoogle Scholar
  29. 29.
    M. Cai, D.P. Field, and G.W. Lorimer, A Systematic Comparison of Static and Dynamic Aging of Two Al-Mg-Si Alloys, Mater. Sci. Eng., A, 2004, 373, p 65–71CrossRefGoogle Scholar
  30. 30.
    G. Sha and A. Cerezo, Early-Stage Precipitation in Al-Zn-Mg-Cu alloy (7050), Acta Mater., 2004, 52, p 4503–4516CrossRefGoogle Scholar
  31. 31.
    L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg, GP-zones in Al–Zn–Mg Alloys and Their Role in Artificial Aging, Acta Mater., 2001, 49, p 3443–3451CrossRefGoogle Scholar
  32. 32.
    F.X. Song, X.M. Zhang, S.D. Liu, N.M. Han, and L. Hua, Effect of Aging on Corrosion Resistance of 7050 Aluminum Alloy Pre-stretching plate, Trans. Nonferrous Met. Soc. China, 2013, 23, p 645–651Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Ruiming Su
    • 1
    Email author
  • Tong Liu
    • 1
  • Yingdong Qu
    • 1
  • Guang Bai
    • 1
  • Rongde Li
    • 1
  1. 1.School of Materials Science and EngineeringShenyang University of TechnologyShenyangPeople’s Republic of China

Personalised recommendations