Study of the Electrical and Diffusion Barrier Properties in Ultrathin Carbon Film-Coated Copper Microwires for Interconnects

  • Chang-Shuo Chang
  • Da-Jiun Wang
  • Tse-Chang Li
  • Chang-Hong Shen
  • Yuan-Chou Jing
  • Gien-Huang Wu
  • Jen-Fin LinEmail author


Four specimen patterns with the microstructure of a microcopper wire are deposited on the Si-wafer substrate plus thermal oxide (SiO2) film as the top layer. Each pattern was prepared to have two kinds of specimens, including with and without ultrathin carbon film between the copper wire and the top layer (SiO2). The effect of carbon film on electrical properties is evaluated via the measurements of the I (current)–V (voltage) curve, sheet electrical resistance, current leakage, and its ratio and effective permittivity. A rapid thermal annealing (RTA) technique is provided as an economic and efficient method to grow the ultrathin carbon film rapidly as the interlayer. Appropriate choices of 900 °C and 3 min as the annealing temperature and time can produce ultrathin carbon film with nearly 100% coverage of the copper surface. The sheet resistance of specimen demonstrates the behavior exactly opposite to that of the carbon film coverage of wire surface. The combined effect of elevating the voltage and annealing temperature of the specimen with carbon film on the current leakage is much lower than that arising in the specimen without carbon film, so long as the carbon films operating at that temperature (between 350 and 500 °C) are still sustainable. The differences in current leakage and effective permittivity between these two kinds of specimen are significantly increased by raising the temperature. The intensity (IC) of copper diffusions into the SiO2 layer in the specimens with the carbon film demonstrates behavior similar to that of current leakage (CL). The IC and CL values for the temperatures ≦ 350 °C are much lower than those obtained at 500 °C.


diffusion barrier electrical properties nano-copper wire rapid thermal annealing ultrathin carbon film 



  1. 1.
    K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 2012, 490, p 192–200CrossRefGoogle Scholar
  2. 2.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamkann, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films On Copper Foils, Science, 2009, 324, p 1312–1314CrossRefGoogle Scholar
  3. 3.
    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun., 2008, 146, p 351–355CrossRefGoogle Scholar
  4. 4.
    S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett., 2008, 100, p 016602CrossRefGoogle Scholar
  5. 5.
    C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388CrossRefGoogle Scholar
  6. 6.
    A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907CrossRefGoogle Scholar
  7. 7.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 2010, 22, p 3906–3924CrossRefGoogle Scholar
  8. 8.
    Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J.M. Tour, Growth of Graphene from Solid Carbon Sources, Nature, 2010, 468, p 549–552CrossRefGoogle Scholar
  9. 9.
    M. Zhang, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.L. Chueh, Y. Zhang, R. Maboudian, and A. Javey, Metal-Catalyzed Crystallization of Amorphous Carbon to Graphene, Appl. Phys. Lett., 2010, 96, p 063110-1–063110-3Google Scholar
  10. 10.
    H. Ji, Y. Hou, Y. Ren, M. Charlton, W.H. Lee, Q. Wu, H. Li, Y. Zhu, Y. Wu, R. Piner, and R.S. Ruoff, Graphene Growth Using a Solid Carbon Feedstock and Hydrogen, ACS Nano, 2011, 5(9), p 7656–7661CrossRefGoogle Scholar
  11. 11.
    Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, Z. Zhai, C. Zeng, Z. Li, J. Yang, and J. Hou, Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources, ACS Nano, 2011, 5(4), p 3385–3390CrossRefGoogle Scholar
  12. 12.
    N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, Y. Zhang, and Z. Liu, Universal Segregation Growth Approach to Wafer-Size Graphene from Non-noble Metals, Nano Lett., 2011, 11, p 297–303CrossRefGoogle Scholar
  13. 13.
    S.M. Kim, A. Hsu, Y.H. Lee, M. Dresselhaus, T. Palacios, K.K. Kim, and J. Kong, The Effect of Copper Pre-cleaning on Graphene Synthesis, Nanotechnology, 2013, 24, p 365602–365608CrossRefGoogle Scholar
  14. 14.
    A. Iamach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zhang, A. Javey, J. Bokor, and Y. Zhang, Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces, Nano Lett., 2010, 10, p 1542–1548CrossRefGoogle Scholar
  15. 15.
    M. Levendorf, C. Ruiz-Vargas, S. Garg, and J. Park, Transfer-Free Batch Fabrication of Single Layer Graphene Transistors, Nano Lett., 2009, 9(12), p 4479–4483CrossRefGoogle Scholar
  16. 16.
    A. Pratt, Overview of the Use of Copper Interconnects in the Semiconductor Industry, Adv. Ener. Ind., 2004. p 1–20Google Scholar
  17. 17.
    M.R. Baklanov, C. Adelmann, L. Zhao, and S. De Gendt, Advanced Interconnects: Materials, Processing, and Reliability, J. Solid State Sci. Technol., 2015, 4(1), p Y1–Y4CrossRefGoogle Scholar
  18. 18.
    Q. Hung, C.M. Lilley, M. Bode, and R. Divan, Surface and Size Effects on the Electrical Properties of Cu Nanowires, J. Appl. Phys., 2008, 104, p 023709–023714CrossRefGoogle Scholar
  19. 19.
    R.L. Graham, G.B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R.H. Geiss, D.T. Read, and S. Peddeti, Resistivity Dominated by Surface Scattering in Sub-50Nm Cu Wires, Appl. Phys. Lett., 2010, 96, p 042116–042118CrossRefGoogle Scholar
  20. 20.
    S. Reich and C. Thomsen, Raman Spectroscopy of Graphite, Philos. Trans. R. Soc. A, 2004, 362(1824), p 2271–2288CrossRefGoogle Scholar
  21. 21.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman Spectroscopy of Carbon Nanotubes, Phys. Rep., 2005, 409(2), p 47–99CrossRefGoogle Scholar
  22. 22.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97(18), p 187401-1–187401-4CrossRefGoogle Scholar
  23. 23.
    J. Hodkiewicz, Characterizing Graphene with Raman Spectroscopy, Therm. Sci. Appl., 2010, p 51946Google Scholar
  24. 24.
    T.K.S. Wong, Time Dependent Dielectric Breakdown in Copper Low-k Interconnects: Mechanisms and Reliability Models, Materials, 2012, 5, p 1602–1625CrossRefGoogle Scholar
  25. 25.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, Hoboken, 2006CrossRefGoogle Scholar
  26. 26.
    W. Hume-Rothery and H.M. Powell, On the Theory of Super-Lattice Structures in Alloys Zeitschrift für Kristallographie-Crystalline Materials, 1935, 91(1), p 23–47Google Scholar
  27. 27.
    C.S. Chang, T.C. Li, Y.C. Tsai, G.H. Wu, and J.F. Lin, Effects of Deposition Method and Conditions for IGZO Film and Thermal Annealing on Composite Film Quality, Surface Roughness, Microstructural Defects, and Electrical Properties of Ti/IGZO/Graphene/Polyimide Specimens, J. Alloys Compd., 2018, 768, p 298–315CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Chang-Shuo Chang
    • 1
    • 2
  • Da-Jiun Wang
    • 1
  • Tse-Chang Li
    • 1
  • Chang-Hong Shen
    • 3
  • Yuan-Chou Jing
    • 4
  • Gien-Huang Wu
    • 1
  • Jen-Fin Lin
    • 1
    • 5
    Email author
  1. 1.Department of Mechanical EngineeringNational Cheng Kung UniversityTainan CityTaiwan, ROC
  2. 2.Department of Aviation and Communication ElectronicsAir Force Institute of TechnologyGangshan TownshipTaiwan, ROC
  3. 3.National Nano Device LaboratoriesTainan CityTaiwan, ROC
  4. 4.Institute of China Military Affairs Studies, Fu Hsing Kang CollegeNational Defense UniversityTaipei CityTaiwan, ROC
  5. 5.Center for Micro/Nano Science and TechnologyNational Cheng Kung UniversityTainan CityTaiwan, ROC

Personalised recommendations