Synthesis and Characterization of Aluminum Matrix Composites Reinforced with (Ni,Cu)3Al Intermetallic Particles via Mechanical Milling Technique

  • H. VillanuevaEmail author
  • B. F. Campillo
  • A. Molina
  • J. Colín
  • A. Sedano
  • S. A. Serna


This study investigates the dispersion of (Ni,Cu)3Al intermetallic particles in an aluminum matrix via low-energy mechanical milling as an alternative to conventional stir casting. The precursor powders consisted in (Ni,Cu)3Al and reactive-grade Al particles with an average size of 15 and 3 microns, respectively. The concentrations used were 3, 5, 8 and 10 wt.% of the intermetallic powders. After 4 h of milling, the obtained powders were compacted in a unidirectional press with a pressure of 930 MPa and the obtained green compacts were sintered at 500 °C in a controlled atmosphere oven for 2 h. Result showed that the bulk composites displayed an increase in the Vickers microhardness as well as an increase in compressive strength and stiffness as the percentage of dispersed particles increased. The Al-8 wt.%(Ni,Cu)3Al sample achieved the best performance and is related to the findings in SEM micrographs that showed that higher reinforcement concentration increased the formation of microporosities that reduce the decohesion of the bulk sample and impact heavily on the mechanical performance of the material.


aluminum matrix composite materials intermetallic particles mechanical alloying 



This work was financed by CONACyT [Grant Number 384950]; the authors would like to thank sincerely René Guardian Tapia and Ivan Puente Lee for the support provided in SEM images.


  1. 1.
    A. Mortensen and J. Llorca, Metal Matrix Composites, Annu. Rev. Mater. Res., 2010, 40, p 243–270CrossRefGoogle Scholar
  2. 2.
    H.Z. Ye and X.Y. Liu, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 39(20), p 6153–6171CrossRefGoogle Scholar
  3. 3.
    D.J. Lloyd, Particle Reinforced Aluminium and Magnesium Matrix Composites, Int. Mater. Rev., 1994, 39(1), p 1–23CrossRefGoogle Scholar
  4. 4.
    A. Sluzalec, Stochastic Characteristics of Powder Metallurgy Processing, Appl. Math. Model., 2015, 39(23–24), p 7303–7308CrossRefGoogle Scholar
  5. 5.
    R.H. Estrada-Ruiz, R. Flores-Campos, J.M. Herrera-Ramírez, R. Martinez-Sanchez, Mechanical Properties of Aluminum 7075-Silver Nanoparticles Powder Composite and its Relationship with the Powder Particle Size, Adv. Powder Technol., 2016, 27(4), p 1694–1699CrossRefGoogle Scholar
  6. 6.
    P. Cavaliere, F. Jahantigh, A. Shabani, and B. Sadeghi, Influence of SiO2 Nanoparticles on the Microstructure and Mechanical Properties of Al Matrix Nanocomposites Fabricated by Spark Plasma Sintering, Compos. B Eng., 2018, 146, p 60–68CrossRefGoogle Scholar
  7. 7.
    X. Chen, D. Fu, J. Teng, and H. Zhang, Hot Deformation Behavior and Mechanism of Hybrid Aluminum-Matrix Composites Reinforced with Micro-SiC and Nano-TiB2, J. Alloys Compd., 2018, 753, p 566–575CrossRefGoogle Scholar
  8. 8.
    S. Venkatesan and M.A. Xavior, Tensile Behavior of Aluminum Alloy (AA7050) Metal Matrix Composite Reinforced with Graphene Fabricated by Stir and Squeeze Cast Processes, Sci. Technol. Mater., 2018, 30(2), p 74–85CrossRefGoogle Scholar
  9. 9.
    L. Lityńska-Dobrzyńska, M. Mitka, A. Góral, K. Stan-Gńska, and J. Dutkiewicz, Microstructure and Mechanical Properties of Aluminium Matrix Composites Reinforced by Al62Cu25. 5Fe12. 5 Melt Spun Ribbon, Mater. Charact., 2016, 117, p 127–133CrossRefGoogle Scholar
  10. 10.
    H. Chen, W. Wang, H. Nie, J. Zhou, Y. Li, and P. Zhang, Microstructure and Mechanical Properties of B4C/6061Al Laminar Composites Fabricated by Power Metallurgy, Vacuum, 2017, 143, p 363–370CrossRefGoogle Scholar
  11. 11.
    Y. Xue, R. Shen, S. Ni, M. Song, and D. Xiao, Fabrication, Microstructure and Mechanical Properties of Al-Fe Intermetallic Particle Reinforced Al-Based Composites, J. Alloys Compd., 2015, 618, p 537–544CrossRefGoogle Scholar
  12. 12.
    J.L. Gonza, F. Garci, G. Caruana, M. Lieblich et al., Aluminum/Ni3Al Composites Processed by Powder Metallurgy, Mater. Sci. Eng. A, 1994, 183(1–2), p L5–L8Google Scholar
  13. 13.
    M.A. Muñoz-Morris and D.G. Morris, Intermetallics: Past, Present and Future, Rev. Metal., 2005, 41(1), p 498–501CrossRefGoogle Scholar
  14. 14.
    R. Casati and M. Vedani, Metal Matrix Composites Reinforced by Nano-particles—a Review, Metals, 2014, 4(1), p 65–83CrossRefGoogle Scholar
  15. 15.
    M. Bomford, J. Benjamin, Mechanically-Alloyed Aluminum-Aluminum Oxide, U.S. Patent No. 3,816,080, U.S. Patent and Trademark Office, Washington, DC, 1974Google Scholar
  16. 16.
    S.A. Tsukerman, Powder Metallurgy, Elsevier, Amsterdam, 1965Google Scholar
  17. 17.
    J. Colin, S. Serna, B. Campillo, O. Flores, and J. Juárez-Islas, Microstructural and Lattice Parameter Study of As-Cast and Rapidly Solidified NiAl Intermetallic Alloys with Cu Additions, Intermetallics, 2008, 16(7), p 847–853CrossRefGoogle Scholar
  18. 18.
    J. Colín, S. Serna, B. Campillo, R.A. Rodríguez, and J. Juárez-Islas, Effect of Cu Additions Over the Lattice Parameter and Hardness of the NiAl Intermetallic Compound, J. Alloys Compd., 2010, 489(1), p 26–29CrossRefGoogle Scholar
  19. 19.
    J.J. Fuentes, J.A. Rodríguez, E.J. Herrera, E.S. de Ingenieros. Rotura de probetas sinterizadas de Al AM con adición de silicio, in Anales de Mecánica de la Fractura, vol. 18; 2001. p 137–144 (in spanish).Google Scholar
  20. 20.
    J.A. Rodríguez, An Alternative Route to the Consolidation of Mechanically Alloyed Aluminum Powder, Mater. Trans. JIM, 1995, 36(2), p 312–316CrossRefGoogle Scholar
  21. 21.
    C.C. Koch, Materials Synthesis by Mechanical Alloying, Annu. Rev. Mater. Sci., 1989, 19(1), p 121–143CrossRefGoogle Scholar
  22. 22.
    S. Sankaranarayanan, S. Jayalakshmi, and M. Gupta, Effect of Individual and Combined Addition of Micro/Nano-sized Metallic Elements on the Microstructure and Mechanical Properties of Pure Mg, Mater. Des., 2012, 37, p 274–284CrossRefGoogle Scholar
  23. 23.
    A. Mazahery, H. Abdizadeh, and H.R. Baharvandi, Development of High-Performance A356/Nano-Al2O3 Composites, Mater. Sci. Eng. A, 2009, 518(1–2), p 61–64CrossRefGoogle Scholar
  24. 24.
    R.S. Rana, R. Purohit, V.K. Soni, and S. Das, Characterization of Mechanical Properties and Microstructure of Aluminium Alloy-SiC Composites, Mater. Today Proc., 2015, 2(4–5), p 1149–1156CrossRefGoogle Scholar
  25. 25.
    K.R. Kumar, K. Kiran, and V.S. Sreebalaji, Microstructural Characteristics and Mechanical Behaviour of Aluminium Matrix Composites Reinforced with Titanium Carbide, J. Alloys Compd., 2017, 723, p 795–801CrossRefGoogle Scholar
  26. 26.
    P. Ravindran, K. Manisekar, S.V. Kumar, and P. Rathika, Investigation of Microstructure and Mechanical Properties of Aluminum Hybrid Nanocomposites with the Additions of Solid Lubricant, Mater. Des., 2013, 51, p 448–456CrossRefGoogle Scholar
  27. 27.
    R.H. Estrada-Ruiz, R. Flores-Campos, J.M. Herrera-Ramírez, and R. Martinez-Sanchez, Mechanical Properties of Aluminum 7075-Silver Nanoparticles Powder Composite and its Relation- Ship with the Powder Particle Size, Adv. Powder Technol., 2016, 27(4), p 1694–1699CrossRefGoogle Scholar
  28. 28.
    P. Hernández, H. Dorantes, F. Hernández, R. Esquivel, D. Rivas, and V. López, Synthesis and Microstructural Characterization of Al-Ni3Al Composites Fabricated by Press-Sintering and Shock- Compaction, Adv. Powder Technol., 2014, 25(1), p 255–260CrossRefGoogle Scholar
  29. 29.
    P.M. Rao, K.S. Murthy, S.V. Suryanarayana, and S.N. Naidu, Effect of Ternary Additions on the Room Temperature Lattice Parameter of Ni3Al, Phys. Stat. Solidi (a), 1992, 133(2), p 231–235CrossRefGoogle Scholar
  30. 30.
    B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Boston, 1978Google Scholar
  31. 31.
    G.B. Schaffer and B.J. Hall, The Influence of the Atmosphere on the Sintering of Aluminum, Metal. Mater. Trans. A, 2002, 33(10), p 3279–3284CrossRefGoogle Scholar
  32. 32.
    G.B. Schaffer, B.J. Hall, S.J. Bonner, S.H. Huo, and T.B. Sercombe, The Effect of the Atmosphere and the Role of Pore Filling on the Sintering of Aluminium, Acta Mater., 2006, 54(1), p 131–138Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • H. Villanueva
    • 1
    Email author
  • B. F. Campillo
    • 2
  • A. Molina
    • 1
  • J. Colín
    • 3
  • A. Sedano
    • 1
  • S. A. Serna
    • 1
  1. 1.Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM-CIICAp)CuernavacaMexico
  2. 2.Instituto de Ciencias Físicas-Facultad de Química, Universidad Nacional Autónoma de México (ICF/FQ-UNAM)Mexico CityMexico
  3. 3.Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos (FCQeI-UAEM)CuernavacaMexico

Personalised recommendations