Advertisement

Bioceramic Coating Produced on AZ80 Magnesium Alloy by One-Step Microarc Oxidation Process

  • Ying XiongEmail author
  • Zengyuan Yang
  • Xiaxia Hu
  • Renguo Song
Article

Abstract

A self-sealing bioceramic coating was prepared on AZ80 magnesium alloy by one-step microarc oxidation (MAO) in an alkaline silicate solution in the presence of HA nanoparticles and K2TiF6. The influence of oxidation time on the microstructure and corrosion resistance was investigated. The surface and cross-sectional morphologies of the coatings were characterized by scanning electron microscopy, while their phase structure and chemical composition were obtained by x-ray diffraction analysis and energy-dispersive spectroscopy, respectively. The corrosion behavior of the coatings was evaluated by electrochemical measurements in a simulated body fluid. The results show that the self-sealing bioceramic coatings are mainly composed of MgO, MgF2, Ti3O5, Mg2SiO4, and HA phases, which effectively improve the corrosion resistance of the AZ80 magnesium alloy. The added K2TiF6 plays a key role in producing self-sealing coating, while the HA nanoparticles improve the bioactivity of the coating. Thus, the self-sealing bioceramic coating obtained by the one-step MAO process may develop into a suitable surface treatment technology for bone implants in clinical application.

Keywords

corrosion resistance hydroxyapatite magnesium alloy microarc oxidation self-sealing 

Notes

Acknowledgments

The authors gratefully acknowledge the project sponsored by the support from National Natural Science Foundation of China (Nos. 51775502, 51275472).

References

  1. 1.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734CrossRefGoogle Scholar
  2. 2.
    X.N. Gu, S.S. Li, X.M. Li, and Y.B. Fan, Magnesium Based Degradable Biomaterials: A Review, Front. Mater. Sci., 2014, 8, p 200–218CrossRefGoogle Scholar
  3. 3.
    Y.H. Gu, S. Bandopadhyay, C.F. Chen, Y.J. Guo, and C.Y. Ning, Effect of Oxidation Time on the Corrosion Behavior of Micro-Arc Oxidation Produced AZ31 Magnesium Alloys in Simulated Body Fluid, J. Alloys Compd., 2012, 543, p 109–117CrossRefGoogle Scholar
  4. 4.
    Y.M. Wang, F.H. Wang, M.J. Xu, B. Zhao, L.X. Guo, and J.H. Ouyang, Microstructure and Corrosion Behavior of Coated AZ91 Alloy by Microarc Oxidation for Biomedical Application, Appl. Surf. Sci., 2009, 255, p 9124–9131CrossRefGoogle Scholar
  5. 5.
    A. Seyfoori, Sh Mirdamadi, A. Khavandi, and Z. Seyed Raufi, Biodegradation Behavior of Micro-Arc Oxidized AZ31 Magnesium Alloys Formed in Two Various Electrolytes, Appl. Surf. Sci., 2012, 261, p 92–100CrossRefGoogle Scholar
  6. 6.
    Z.J. Jia, M. Li, Q. Liu, X.C. Xu, Y. Cheng, Y.F. Zheng, T.F. Xi, and S.C. Wei, Micro-Arc Oxidization of a Novel Mg-1Ca Alloy in Three Alkaline KF Electrolytes: Corrosion Resistance and Cytotoxicity, Appl. Surf. Sci., 2014, 292, p 1030–1039CrossRefGoogle Scholar
  7. 7.
    L.C. Zhao, C.X. Cui, Q.Z. Wang, and S.J. Bu, Growth Characteristics and Corrosion Resistance of Micro-Arc Oxidation Coating on Pure Magnesium for Biomedical Applications, Corros. Sci., 2010, 52, p 2228–2234CrossRefGoogle Scholar
  8. 8.
    H.J. Yu, Q. Dong, J.H. Dou, Y.K. Pan, and C.Z. Chen, Preparation of Si-Containing Oxide Coating and Biomimetic Apatiteinduction on Magnesium Alloy, Appl. Surf. Sci., 2016, 388, p 148–154CrossRefGoogle Scholar
  9. 9.
    X.N. Gu, N. Li, W.R. Zhou, Y.F. Zheng, X. Zhao, Q.Z. Cai, and L.Q. Ruan, Corrosion Resistance and Surface Biocompatibility of a Microarc Oxidation Coating on a Mg–Ca Alloy, Acta Biomater., 2011, 7, p 1880–1889CrossRefGoogle Scholar
  10. 10.
    Y.K. Pan, D.G. Wang, and C.Z. Chen, Effect of Negative Voltage on the Microstructure, Degradability and In Vitro Bioactivity of Microarc Oxidized Coatings on ZK60 Magnesium Alloy, Mater. Lett., 2014, 119, p 127–130CrossRefGoogle Scholar
  11. 11.
    H.J. Yu, Q. Dong, J.H. Dou, Y.K. Pan, and C.Z. Chen, Structure and In Vitro Bioactivity of Ceramic Coatings on Magnesium Alloys by Microarc Oxidation, Appl. Surf. Sci., 2016, 388, p 114–119CrossRefGoogle Scholar
  12. 12.
    J. Liang, B.G. Guo, J. Tian, H.W. Liu, J.F. Zhou, and T. Xu, Effect of Potassium Fluoride in Electrolytic Solution on the Structure and Properties of Microarc Oxidation Coatings on Magnesium Alloy, Appl. Surf. Sci., 2005, 252, p 345–351CrossRefGoogle Scholar
  13. 13.
    L. White, Y. Koo, S. Neralla, J. Sankar, and Y. Yun, Enhanced Mechanical Properties and Increased Corrosion Resistance of a Biodegradable Magnesium Alloy by Plasma Electrolytic Oxidation (PEO), Mater. Sci. Eng., B, 2016, 208, p 39–46CrossRefGoogle Scholar
  14. 14.
    T. Zhang, X.N. Wu, H.Y. Huang, Y. Zhang, M. Li, G.B. Lan, H. Xia, and Q.S. Yin, The Beneficial Influence of Microarc Oxidation-Coated Magnesium Alloy on the Adhesion, Proliferation and Osteogenic Variousiation of Bone Marrow Stromal Cells, Mater. Lett., 2014, 137, p 362–365CrossRefGoogle Scholar
  15. 15.
    K.J.L. Burg, S. Porter, and J.F. Kellam, Biomaterial Developments for Bone Tissue Engineering, Biomaterials, 2000, 21, p 2347–2359CrossRefGoogle Scholar
  16. 16.
    L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance Of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res. B, 2001, 58, p 570–592CrossRefGoogle Scholar
  17. 17.
    G.Y. Liu, J. Hu, Z.K. Ding, and C. Wang, Bioactive Calcium Phosphate Coating Formed on Micro-Arc Oxidized Magnesium by Chemical Deposition, Appl. Surf. Sci., 2011, 257, p 2051–2057CrossRefGoogle Scholar
  18. 18.
    Q.M. Zhao, X. Guo, X.Q. Dang, J.M. Hao, J.H. Lai, and K.Z. Wang, Preparation and Properties of Composite MAO/ECD Coatings on Magnesium Alloy, Colloids Surf. B, 2013, 102, p 321–326CrossRefGoogle Scholar
  19. 19.
    J.H. Gao, S.K. Guan, J. Chen, L.G. Wang, S.J. Zhu, J.H. Hu, and Z.W. Ren, Fabrication and Characterization of Rod-Like Nano-Hydroxyapatite on MAO Coating Supported on Mg-Zn-Ca Alloy, Appl. Surf. Sci., 2011, 257, p 2231–2237CrossRefGoogle Scholar
  20. 20.
    S. Chen, S.K. Guan, W. Li, H.X. Wang, J. Chen, Y.S. Wang, and H.T. Wang, In Vivo Degradation and Bone Response of a Composite Coating on Mg-Zn-Ca Alloy Prepared by Microarc Oxidation and Electrochemical Deposition, J. Biomed. Mater. Res. B, 2012, 100B, p 533–543CrossRefGoogle Scholar
  21. 21.
    H. Tang, D.Z. Yu, Y. Luo, and F.P. Wang, Preparation and Characterization of HA Micro Flowers Coating on AZ31 Magnesium Alloy by Micro-Arc Oxidation and a Solution Treatment, Appl. Surf. Sci., 2013, 264, p 816–822CrossRefGoogle Scholar
  22. 22.
    L.C. Zhao, C.X. Cui, X. Wang, S.J. Liu, S.J. Bu, Q.Z. Wang, and Y.M. Qi, Corrosion Resistance And Calcium–Phosphorus Precipitation of Micro-Arc Oxidized Magnesium for Biomedical Applications, Appl. Surf. Sci., 2015, 330, p 431–438CrossRefGoogle Scholar
  23. 23.
    P. Shi, W.F. Ng, M.H. Wong, and F.T. Cheng, Improvement of Corrosion Resistance Of Pure Magnesium in Hanks’ Solution by Microarc Oxidation With Sol–Gel TiO2 Sealing, Appl. Surf. Sci., 2009, 469, p 286–292Google Scholar
  24. 24.
    R. Rojaee, M. Fathi, and K. Raeissi, Electrophoretic deposition of nano structured hydroxyapatite coating on AZ91 magnesium alloy implants with various surface treatments, Appl. Surf. Sci., 2013, 285P, p 664–673CrossRefGoogle Scholar
  25. 25.
    Y. Xiong, C. Lu, C. Wang, and R.G. Song, The MAO/EPD Bio-Ceramic Composite Coating Fabricated on ZK60 Magnesium Alloy Using Combined Micro-Arc Oxidation and Electrophoretic Deposition, Appl. Surf. Sci., 2014, 322, p 230–235CrossRefGoogle Scholar
  26. 26.
    M. Razavi, M. Fathi, O. Savabi, D. Vashaee, and L. Tayebi, In Vivo Assessments of Bioabsorbable AZ91 Magnesium Implants Coated with Nanostructured Fluoridated Hydroxyapatite by MAO/EPD Technique for Biomedical Applications, Mater. Sci. Eng., C, 2015, 48, p 21–27CrossRefGoogle Scholar
  27. 27.
    X. Lin, X. Wang, L.L. Tan, P. Wan, X.M. Yu, Q. Li, and K. Yang, Effect of Preparation Parameters on the Properties of Hydroxyapatite Containing Micro-Arc Oxidation Coating on Biodegradable ZK60 Magnesium Alloy, Ceram. Int., 2014, 40, p 10043–10051CrossRefGoogle Scholar
  28. 28.
    X. Ma, S.J. Zhu, L.G. Wang, C.X. Ji, C.C. Ren, and S.K. Guan, Synthesis and Properties of a Bio-Composite Coating Formed on Magnesium Alloy by One-Step Method Of Micro-Arc Oxidation, J. Alloys Compd., 2014, 590, p 247–253CrossRefGoogle Scholar
  29. 29.
    F. Liu, D.Y. Shan, Y.W. Song, E.H. Han, and W. Ke, Corrosion Behavior of the Composite Ceramic Coating Containing Zirconium Oxides on AM30 Magnesium Alloy by Plasma Electrolytic Oxidation, Corros. Sci., 2011, 53, p 3845–3852CrossRefGoogle Scholar
  30. 30.
    F. Liu, D.Y. Shan, Y.W. Song, and E.H. Han, Effect of Additives on the Properties of Plasma Electrolytic Oxidation Coatings Formed on AM50 Magnesium Alloy in Electrolytes Containing K2ZrF6, Surf. Coat. Technol., 2011, 206, p 455–463CrossRefGoogle Scholar
  31. 31.
    D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, Ch Subrahmanyam, L. Rama Krishna, and K. Prasad Rao, Effect of K2TiF6 and Na2B4O7 as Electrolyte Additives on Pore Morphology and Corrosion Properties of Plasma Electrolytic Oxidation Coatings on ZM21 Magnesium Alloy, Surf. Coat. Technol., 2013, 222, p 31–37CrossRefGoogle Scholar
  32. 32.
    K.H. Dong, Y.W. Song, D.Y. Shan, and E.H. Han, Formation Mechanism of a Self-Sealing Pore Micro-Arc Oxidation Film on AM60 Magnesium Alloy, Surf. Coat. Technol., 2015, 266, p 188–196CrossRefGoogle Scholar
  33. 33.
    X.J. Cui, C.H. Liu, R.S. Yang, M.T. Li, and X.Z. Lin, Self-Sealing Micro-Arc Oxidation Coating on AZ91D Mg Alloy and Its Formation Mechanism, Surf. Coat. Technol., 2015, 269, p 228–237CrossRefGoogle Scholar
  34. 34.
    Y. Xiong, Q. Hu, X.X. Hu, and R.G. Song, Microstructure and Corrosion Resistance of Ti3O5-HA Bio-Ceramic Coating Fabricated on AZ80 Magnesium Alloy, Surf. Coat. Technol., 2017, 325, p 239–247CrossRefGoogle Scholar
  35. 35.
    G.H. Lv, H. Chen, L. Li, E.W. Niu, H. Pang, B. Zou, and S.Z. Yang, Investigation of Plasma Electrolytic Oxidation Process on AZ91D Magnesium Alloy, Curr. Appl. Phys., 2009, 9, p 126–130CrossRefGoogle Scholar
  36. 36.
    H.P. Duan, C.W. Yan, and F.H. Wang, Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D, Electrochim. Acta, 2007, 52, p 3785–3793CrossRefGoogle Scholar
  37. 37.
    G. Song, A. Atrens, D.S. John, X. Wu, and J. Nairn, The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions, Corros. Sci., 1997, 39, p 1981–2004CrossRefGoogle Scholar
  38. 38.
    J.J. Zhuang, Y.Q. Guo, N. Xiang, Y. Xiong, Q. Hu, and R.G. Song, A study on Microstructure and Corrosion Resistance of ZrO2-Containing PEO Coatings Formed on AZ31 Mg Alloy in Phosphate-Based Electrolyte, Appl. Surf. Sci., 2015, 357, p 1463–1471CrossRefGoogle Scholar
  39. 39.
    H.F. Guo, M.Z. An, S. Xu, and H.B. Huo, Formation of Oxygen Bubbles and Its Influence on Current Efficiency in Micro-Arc Oxidation Process of AZ91D Magnesium Alloy, Thin Solid Films, 2005, 485, p 53–58CrossRefGoogle Scholar
  40. 40.
    W.B. Xue, Z.W. Deng, R.Y. Chen, and T.H. Zhang, Growth Regularity of Ceramic Coatings Formed by Microarc Oxidation on Al-Cu-Mg Alloy, Thin Solid Films, 2000, 372, p 114–117CrossRefGoogle Scholar
  41. 41.
    R.F. Zhang and S.F. Zhang, Formation of micro-arc oxidation coatings on AZ91HP magnesium alloys, Corros. Sci., 2009, 51, p 2820–2825CrossRefGoogle Scholar
  42. 42.
    D.Y. Kim, M. Kim, H.E. Kim, Y.H. Koh, H.W. Kim, and J.H. Jang, Formation of Hydroxyapatite Within Porous TiO2 Layer By Micro-Arc Oxidation Coupled with Electrophoretic Deposition, Acta Biomater., 2009, 5, p 2196–2205CrossRefGoogle Scholar
  43. 43.
    L.W. Song, Y.W. Song, D.Y. Shan, G.Y. Zhu, and E.H. Han, Product/Metal Ratio (PMR): A Novel Criterion for the Evaluation of Electrolytes on Micro-Arc Oxidation (MAO) of Mg and Its Alloys, China Technol. Sci., 2011, 54, p 2795–2801CrossRefGoogle Scholar
  44. 44.
    Y.P. Lu, Y.M. Chen, S.T. Li, and J.H. Wang, Surface Nanocrystallization of Hydroxyapatite Coating, Acta Biomater., 2008, 4, p 1865–1872CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Ying Xiong
    • 1
    Email author
  • Zengyuan Yang
    • 1
  • Xiaxia Hu
    • 1
  • Renguo Song
    • 2
  1. 1.Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, College of Mechanical EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.School of Materials Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations