Advertisement

Experimental Study of the Influence of a Tensile Preload on Thin Woven Composite Laminates Under Impact Loading

  • T. LangellaEmail author
  • A. Rogani
  • P. Navarro
  • J. F. Ferrero
  • V. Lopresto
  • A. Langella
Article

Abstract

In this work, the influence of a tensile preload on the impact behavior of thin woven composite laminates is investigated. These kinds of laminates are usually parts of more complex structures, for example, skins of structural sandwich panels or helicopter blades. These structures are generally subjected to external loads, and can also be impacted in operation. The objective of this study is to identify a correspondence between the preload of the structure and the resulting impact damage. This preliminary work is a first step of a more global study that aims at predicting impact damage in structural composites in order to optimize the design process. Experimental tests are carried out on carbon/epoxy and glass/epoxy mixed thin laminates and on sandwich structures. The samples are loaded uniaxially using a specially designed test rig. The effect of the preload on the impact damage size and shape and the peak load is experimentally quantified and discussed.

Keywords

low-velocity impact preload sandwich structure woven composite 

Notes

References

  1. 1.
    P. Navarro, J. Aubry, S. Marguet, J.-F. Ferrero, S. Lemaire, and P. Rauch, Experimental and Numerical Study of Oblique Impact on Woven Composite Sandwich Structure: Influence of the Firing Axis Orientation, Compos. Struct., 2012, 94(6), p 1967–1972CrossRefGoogle Scholar
  2. 2.
    P. Navarro, J. Aubry, S. Marguet, J.-F. Ferrero, S. Lemaire, and P. Rauch, Semi-Continuous Approach for the Modelling of Thin Woven Composite Panels Applied to Oblique Impacts on Helicopter Blades, Compos. A Appl. Sci. Manuf., 2012, 43(6), p 871–879CrossRefGoogle Scholar
  3. 3.
    F. Pascal, O. Dorival, P. Navarro, S. Marguet, and J.-F. Ferrero, Impact Damage Prediction in Thin Woven Composite Laminates-Part I: Modeling Strategy and Validation, Compos. Struct., 2018, 190, p 32–42CrossRefGoogle Scholar
  4. 4.
    F. Pascal, A. Rogani, B. Mahmoud, P. Navarro, S. Marguet, and J.-F. Ferrero, Impact Damage Prediction in Thin Woven Composite Laminates—Part II: Application to Normal and Oblique Impacts on Sandwich Structure, Compos. Struct., 2018, 190, p 43–51CrossRefGoogle Scholar
  5. 5.
    I. Tawk, J. Aubry, P. Navarro, J.-F. Ferrero, S. Marguet, S. Rivallant, S. Lemaire, and P. Rauch, Study of Impact on Helicopter Blade, Eng. Fail. Anal., 2012, 24, p 38–45CrossRefGoogle Scholar
  6. 6.
    S. Abrate, Impact on Composite Structures, Cambridge University Press, Cambridge, 1998CrossRefGoogle Scholar
  7. 7.
    C. Atas and O. Sayman, An Overall View on Impact Response of Woven Fabric Composite Plates, Compos. Struct., 2008, 82(3), p 336–345CrossRefGoogle Scholar
  8. 8.
    M.O.W. Richardson and M.J. Wisheart, Review of Low-Velocity Impact Properties of Composite Materials, Compos. A Appl. Sci. Manuf., 1996, 27(12), p 1123–1131CrossRefGoogle Scholar
  9. 9.
    S.A. Hitchen and R.M.J. Kemp, The Effect of Stacking Sequence on Impact Damage in a Carbon Fibre/Epoxy Composite, Composites, 1995, 26(3), p 207–214CrossRefGoogle Scholar
  10. 10.
    E. Fuoss, P.V. Straznicky, and C. Poon, Effects of Stacking Sequence on the Impact Resistance in Composite Laminates Part 1: Parametric Study, Compos. Struct., 1998, 41(1), p 67–77CrossRefGoogle Scholar
  11. 11.
    G. Belingardi and R. Vadori, Influence of the Laminate Thickness in Low Velocity Impact Behavior of Composite Material Plate, Compos. Struct., 2003, 61(1), p 27–38CrossRefGoogle Scholar
  12. 12.
    P. Viot, L. Ballre, L. Guillaumat, and J.-L. Lataillade, Scale Effects on the Response of Composite Structures Under Impact Loading, Eng. Fract. Mech., 2008, 75(9), p 2725–2736CrossRefGoogle Scholar
  13. 13.
    B. Vieille, V.M. Casado, and C. Bouvet, Influence of Matrix Toughness and Ductility on the Compression-After-Impact Behavior of Woven-Ply Thermoplastic- and Thermosetting-Composites: A Comparative Study, Compos. Struct., 2014, 110, p 207–218CrossRefGoogle Scholar
  14. 14.
    S.M. Bishop, The Mechanical Performance and Impact Behavior of Carbon-Fibre Reinforced PEEK, Compos. Struct., 1985, 3(3), p 295–318CrossRefGoogle Scholar
  15. 15.
    G. Dorey, S.M. Bishop, and P.T. Curtis, On the Impact Performance of Carbon Fibre Laminates with Epoxy and PEEK Matrices, Compos. Sci. Technol., 1985, 23(3), p 221–237CrossRefGoogle Scholar
  16. 16.
    T. Mitrevski, I.H. Marshall, and R. Thomson, The Influence of Impactor Shape on the Damage to Composite Laminates, Compos. Struct., 2006, 76(1), p 116–122CrossRefGoogle Scholar
  17. 17.
    W.J. Cantwell and J. Morton, The Influence of Varying Projectile Mass on the Impact Response of CFRP, Compos. Struct., 1989, 13(2), p 101–114CrossRefGoogle Scholar
  18. 18.
    W.J. Cantwell and J. Morton, Comparison of the Low and High Velocity Impact Response of CFRP, Composites, 1989, 20(6), p 545–551CrossRefGoogle Scholar
  19. 19.
    O. De Almeida, J.-F. Ferrero, L. Escal, and G. Bernhart, Charpy Test Investigation of the Influence of Fabric Weave and Fibre Nature on Impact Properties of PEEK-Reinforced Composites, J. Thermoplast. Compos. Mater., 2018.  https://doi.org/10.1177/0892705718778744
  20. 20.
    S.V. Lomov, D.S. Ivanov, T.C. Truong, I. Verpoest, F. Baudry, K. Vanden Bosche, and H. Xie, Experimental Methodology of Study of Damage Initiation and Development in Textile Composites in Uniaxial Tensile Test, Compos. Sci. Technol., 2008, 68(12), p 2340–2349CrossRefGoogle Scholar
  21. 21.
    S. Daggumati, E. Voet, W. Van Paepegem, J. Degrieck, J. Xu, S.V. Lomov, and I. Verpoest, Local Strain in a 5-Harness Satin Weave Composite Under Static Tension: Part I, Exp. Anal. Compos. Sci. Technol., 2011, 71(8), p 1171–1179CrossRefGoogle Scholar
  22. 22.
    B. Whittingham, I.H. Marshall, T. Mitrevski, and R. Jones, The Response of Composite Structures with Pre-stress Subject to Low Velocity Impact Damage, Compos. Struct., 2004, 66, p 685–698CrossRefGoogle Scholar
  23. 23.
    T. Mitrevski, I.H. Marshall, R.S. Thomson, and R. Jones, Low-Velocity Impacts on Preloaded GFRP Specimens with Various Impactor Shapes, Compos. Struct., 2006, 76, p 209–217CrossRefGoogle Scholar
  24. 24.
    G.A. Schoeppner and S. Abrate, Delamination Threshold Loads for Low Velocity Impact on Composite Laminates, Compos. A Appl. Sci. Manuf., 2000, 31, p 903–915CrossRefGoogle Scholar
  25. 25.
    A.K. Pickett, M.R.C. Fouinneteau, and P. Middendorf, Test and Modelling of Impact on Pre-loaded Composite Panels, Appl. Compos. Mater., 2009, 16, p 225–244CrossRefGoogle Scholar
  26. 26.
    S.-T. Chiu, Y.-Y. Liou, Y.-C. Chang, and C. Ong, Low Velocity Impact Behavior of Prestressed Composite Laminates, Mater. Chem. Phys., 1997, 47, p 268–272CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Chemical, Materials and Production EngineeringUniversity of Naples “Federico II”NaplesItaly
  2. 2.Université de Toulouse, Institut Clément Ader, UMR CNRS 5312, UPS/INSA/ISAE/Mines AlbiToulouseFrance

Personalised recommendations