Advertisement

Manufacturing of a Metal Matrix Composite Coating on a Polymer Matrix Composite Through Cold Gas Dynamic Spray Technique

  • Alessia Serena Perna
  • Antonio Viscusi
  • Antonello AstaritaEmail author
  • Luca Boccarusso
  • Luigi Carrino
  • Massimo Durante
  • Raffaele Sansone
Article

Abstract

In this work, the manufacturing through cold gas dynamic spray (cold spray or CS) of metallic composite coatings of Al-Al2O3 on organic composite substrates with thermoplastic PLA matrix and hemp fibers was studied. Alumina powders, with a mean diameter of 50 μm, were used blended with aluminum powders in three different weight concentration percentages (0, 15, 20, and 45%) as feedstock material in order to highlight and discuss the variations of the coating surface properties depending on the alumina percentage. The coatings were produced by using a low-pressure cold spray equipment. A detailed experimental campaign, including microstructural observations and confocal microscopy, was carried out to study the structure of the coatings. Moreover, the tribological behavior of the coatings was studied through both scratch test and pin-on-disk test. The experiments showed that a small addition of alumina improves the compactness of the coating and its resistance to scratch and wear behavior.

Keywords

alumina aluminum powder ceramics cold spray hemp metal matrix composite natural fiber composite 

Notes

References

  1. 1.
    P. Carlone, F. Rubino, V. Paradiso, and F. Tucci, Multi-Scale Modeling and Online Monitoring of Resin Flow Through Dual-Scale Textiles in Liquid Composite Molding Processes, Int. J. Adv. Manuf. Technol., 2018,  https://doi.org/10.1007/s00170-018-1703-9 Google Scholar
  2. 2.
    L.G. Blok, M.L. Longana, H. Yu, and B.K.S. Woods, An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites, Addit. Manuf., 2018, 22, p 176–186.  https://doi.org/10.1016/j.addma.2018.04.039 CrossRefGoogle Scholar
  3. 3.
    X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, 3D Printing of Polymer Matrix Composites: A Review and Prospective, Compos. Part B Eng., 2017, 110, p 442–458.  https://doi.org/10.1016/j.compositesb.2016.11.034 CrossRefGoogle Scholar
  4. 4.
    D. Aleksendrić, P. Carlone, and V. Ćirović, Optimization of the Temperature-Time Curve for the Curing Process of Thermoset Matrix Composites, Appl. Compos. Mater., 2016, 23(5), p 1047–1063.  https://doi.org/10.1007/s10443-016-9499-y CrossRefGoogle Scholar
  5. 5.
    C. Scarponi, F. Sarasini, J. Tirillò, L. Lampani, T. Valente, and P. Gaudenzi, Low-Velocity Impact Behaviour of Hemp Fibre Reinforced Bio-Based Epoxy Laminates, Compos. Part B Eng., 2016, 91, p 162–168.  https://doi.org/10.1016/j.compositesb.2016.01.048 CrossRefGoogle Scholar
  6. 6.
    F. Rubino, V. Paradiso, A. Astarita, P. Carlone, and A. Squillace, Advances in Titanium on Aluminium Alloys Cold Spray Coatings, 2017,  https://doi.org/10.1007/978-3-319-67183-3_7 Google Scholar
  7. 7.
    J. Villafuerte, Current and Future Applications of Cold Spray Technology, Met. Finish., 2010, 108(1), p 37–39.  https://doi.org/10.1016/s0026-0576(10)80005-4 CrossRefGoogle Scholar
  8. 8.
    H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382–407.  https://doi.org/10.1016/j.actamat.2016.06.034 CrossRefGoogle Scholar
  9. 9.
    M. Diab, X. Pang, and H. Jahed, The Effect of Pure Aluminum Cold Spray Coating on Corrosion and Corrosion Fatigue of Magnesium (3% Al–1% Zn) Extrusion, Surf. Coat. Technol., 2017, 309, p 423–435.  https://doi.org/10.1016/j.surfcoat.2016.11.014 CrossRefGoogle Scholar
  10. 10.
    A. Moridi, S.M. Hassani-Gangaraj, and M. Guagliano, On Fatigue Behavior of Cold Spray Coating, MRS Proc., 2014, 1650, p mrsf13-1650-jj05-03.  https://doi.org/10.1557/opl.2014.438 CrossRefGoogle Scholar
  11. 11.
    V.K. Champagne, The Cold Spray Materials Deposition Process. Fundamental an Aplications, 2007.Google Scholar
  12. 12.
    A. Sova, R. Maestracci, M. Jeandin, P. Bertrand, and I. Smurov, Kinetics of Composite Coating Formation Process in Cold Spray: Modelling and Experimental Validation, Surf. Coat. Technol., 2017, 318, p 309–314.  https://doi.org/10.1016/j.surfcoat.2016.06.084 CrossRefGoogle Scholar
  13. 13.
    A.P. Alkhimov, V.F. Kosarev, and S.V. Klinkov, The Features of Cold Spray Nozzle Design, J. Therm. Spray Technol., 2001, 10, p 375–381.  https://doi.org/10.1361/105996301770349466 CrossRefGoogle Scholar
  14. 14.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729–742.  https://doi.org/10.1016/j.actamat.2005.10.005 CrossRefGoogle Scholar
  15. 15.
    W.Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C.J. Li, and C. Coddet, Effect of Standoff Distance on Coating Deposition Characteristics in Cold Spraying, Mater. Des., 2008, 29, p 297–304.  https://doi.org/10.1016/j.matdes.2007.02.005 CrossRefGoogle Scholar
  16. 16.
    P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19, p 620–634.  https://doi.org/10.1007/s11666-009-9454-7 CrossRefGoogle Scholar
  17. 17.
    K. Spencer, D.M. Fabijanic, and M.-X. Zhang, The Use of Al–Al2O3 Cold Spray Coatings to Improve the Surface Properties of Magnesium Alloys, Surf. Coat. Technol., 2009, 204, p 336–344.  https://doi.org/10.1016/J.SURFCOAT.2009.07.032 CrossRefGoogle Scholar
  18. 18.
    B. AL-Mangour, R. Mongrain, E. Irissou, and S. Yue, Improving the Strength and Corrosion Resistance of 316L Stainless Steel for Biomedical Applications Using Cold Spray, Surf. Coat. Technol., 2013, 216, p 297–307.  https://doi.org/10.1016/j.surfcoat.2012.11.061 CrossRefGoogle Scholar
  19. 19.
    R. Lupoi and W. O’Neill, Deposition of Metallic Coatings on Polymer Surfaces Using Cold Spray, Surf. Coat. Technol., 2010, 1, p 1.  https://doi.org/10.1016/j.surfcoat.2010.08.128 Google Scholar
  20. 20.
    D. Giraud, F. Borit, V. Guipont, M. Jeandin, J.M. Malhaire, Metallization of a Polymer Using Cold Spray: Application to Aluminum Coating of Polyamide 66, in Int. Therm. Spray Conf. Expo. - Air, Land, Water Hum. Body Therm. Spray Sci. Appl. ITSC 2012. (2012) pp. 265–270.Google Scholar
  21. 21.
    F. Rubino, M. Pisaturo, A. Senatore, P. Carlone, and T.S. Sudarshan, Tribological Characterization of SiC and B4C Manufactured by Plasma Pressure Compaction, J. Mater. Eng. Perform., 2017,  https://doi.org/10.1007/s11665-017-3016-9 Google Scholar
  22. 22.
    A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surface Eng., 2014, 30(6), p 369–395.  https://doi.org/10.1179/1743294414y.0000000270 CrossRefGoogle Scholar
  23. 23.
    L. Boccarusso, M. Durante, A. Formisano, A. Langella, F.M.C. Minutolo, Lightweight Bio-composites Based on Hemp Fibres Produced by Conventional and Unconventional Processes, in AIP Conference Proceedings, 2017, p. 050015.  https://doi.org/10.1063/1.5008060.
  24. 24.
    A.D. La Rosa, G. Recca, J. Summerscales, A. Latteri, G. Cozzo, and G. Cicala, Bio-based Versus Traditional Polymer Composites. A Life Cycle Assessment Perspective, J. Clean. Prod., 2014, 74, p 135–144.  https://doi.org/10.1016/j.jclepro.2014.03.017 CrossRefGoogle Scholar
  25. 25.
    L.T. Drzal, A.K. Mohanty, and M. Misra, Bio-Composite Materials As Alternatives To Petroleum-Based Composites for Automotive Applications, Magnesium, 2001, 40, p 1–3Google Scholar
  26. 26.
    K.N. Bharath and S. Basavarajappa, Applications of Biocomposite Materials Based on Natural Fibers from Renewable Resources: A Review, Sci. Eng. Compos. Mater., 2016, 23, p 123–133.  https://doi.org/10.1515/secm-2014-0088 CrossRefGoogle Scholar
  27. 27.
    A.N. Netravali and S. Chabba, Composites Get Greener, Mater. Today, 2003, 4(6), p 22–29.  https://doi.org/10.1016/s1369-7021(03)00427-9 CrossRefGoogle Scholar
  28. 28.
    Poly-Lactic Acid Jamshidian, Production, Applications, Nanocomposites, and Release Studies, Compr. Rev. Food Sci, Food Saf, 2010Google Scholar
  29. 29.
    E.T.H. Vink, K.R. Rábago, D.A. Glassner, and P.R. Gruber, Applications of Life Cycle Assessment to NatureWorks™ Polylactide (PLA) Production, Polym. Degrad. Stab., 2003, 80, p 403–419.  https://doi.org/10.1016/S0141-3910(02)00372-5 CrossRefGoogle Scholar
  30. 30.
    A. Le Duigou, P. Davies, and C. Baley, Environmental Impact Analysis of the Production of Flax Fibres to be Used as Composite Material Reinforcement, J. Biobased Mater. Bioenergy., 2011, 5, p 153–165.  https://doi.org/10.1166/jbmb.2011.1116 CrossRefGoogle Scholar
  31. 31.
    A. Astarita, L. Boccarusso, M. Durante, A. Viscusi, R. Sansone, and L. Carrino, Study of the Production of a Metallic Coating on Natural Fiber Composite Through the Cold Spray Technique, J. Mater. Eng. Perform., 2018, 27, p 739–750.  https://doi.org/10.1007/s11665-018-3147-7 CrossRefGoogle Scholar
  32. 32.
    A. Shkodkin, A. Kashirin, O. Klyuev, T. Buzdygar, The Basic Principles of DYMET Technology, in: Int. Therm. Spray Conf., 2006, pp. 15–58.  https://doi.org/10.1016/b978-0-443-10090-1.50010-4.
  33. 33.
    A. Shkodkin, A. Kashirin, O. Klyuev, and T. Buzdygar, Metal Particle Deposition Stimulation by Surface Abrasive Treatment in Gas Dynamic Spraying, J Them Spray., 2006, 1, p 1.  https://doi.org/10.1361/105996306x124383 Google Scholar
  34. 34.
    S. Pathak and G. Saha, Development of Sustainable Cold Spray Coatings and 3D Additive Manufacturing Components for Repair/Manufacturing Applications: A Critical Review, Coatings., 2017, 7, p 122.  https://doi.org/10.3390/coatings7080122 CrossRefGoogle Scholar
  35. 35.
    F. Rubino, P. Carlone, D. Aleksendrić, V. Čirović, L. Sorrentino, C. Bellini, Hard and Soft Computing Models of Composite Curing Process Looking Toward Monitoring and Control, in AIP Conf. Proc., 2016.  https://doi.org/10.1063/1.4963438.
  36. 36.
    M.-P. Ho, H. Wang, J.-H. Lee, C.-K. Ho, K.-T. Lau, J. Leng, and D. Hui, Critical Factors on Manufacturing Processes of Natural Fibre Composites, Compos. Part B, 2012, 43, p 3549–3562.  https://doi.org/10.1016/j.compositesb.2011.10.001 CrossRefGoogle Scholar
  37. 37.
    L. Boccarusso, L. Carrino, M. Durante, A. Formisano, A. Langella, and F. Memola Capece Minutolo, Hemp Fabric/Epoxy Composites Manufactured by Infusion Process: Improvement of Fire Properties Promoted by Ammonium Polyphosphate, Compos. Part B Eng., 2016, 89, p 117–126.  https://doi.org/10.1016/j.compositesb.2015.10.045 CrossRefGoogle Scholar
  38. 38.
    M.M. Kabir, H. Wang, K.T. Lau, and F. Cardona, Tensile Properties of Chemically Treated Hemp Fibres as Reinforcement for Composites, Compos. Part B, 2013, 53, p 362–368.  https://doi.org/10.1016/j.compositesb.2013.05.048 CrossRefGoogle Scholar
  39. 39.
    F. Tucci, F. Rubino, P. Carlone, Strain and Temperature Measurement in Pultrusion Processes by Fiber Bragg Grating Sensors, in AIP Conf. Proc., 2018.  https://doi.org/10.1063/1.5034837.
  40. 40.
    H. Che, P. Vo, and S. Yue, Metallization of Carbon Fibre Reinforced Polymers by Cold Spray, Surf. Coat. Technol., 2017, 313, p 236–247.  https://doi.org/10.1016/j.surfcoat.2017.01.083 CrossRefGoogle Scholar
  41. 41.
    A. Viscusi, P. Ammendola, A. Astarita, F. Raganati, F. Scherillo, A. Squillace, R. Chirone, and L. Carrino, Aluminum Foam Made via a New Method Based on Cold Gas Dynamic Sprayed Powders Mixed Through Sound Assisted Fluidization Technique, J. Mater. Process. Technol., 2016, 231, p 265–276.  https://doi.org/10.1016/j.jmatprotec.2015.12.030 CrossRefGoogle Scholar
  42. 42.
    X.L. Zhou, A.F. Chen, J.C. Liu, X.K. Wu, and J.S. Zhang, Preparation of Metallic Coatings on Polymer Matrix Composites by Cold Spray, Surf. Coat. Technol., 2011, 206, p 132–136.  https://doi.org/10.1016/j.surfcoat.2011.07.005 CrossRefGoogle Scholar
  43. 43.
    A. Ganesan, J. Affi, M. Yamada, and M. Fukumoto, Bonding Behavior Studies of Cold Sprayed Copper Coating on the PVC Polymer Substrate, Surf. Coat. Technol., 2012, 207, p 262–269.  https://doi.org/10.1016/j.surfcoat.2012.06.086 CrossRefGoogle Scholar
  44. 44.
    D. Rasselet, A. Ruellan, A. Guinault, C. Sollogoub, B. Fayolle, D. Rasselet, A. Ruellan, A. Guinault, G. Miquelard-garnier, Oxidative Degradation of Polylactide (PLA) and Its Effects on Physical and Mechanical Properties, To cite this version: HAL Id: hal-00977105 Science Arts & Métiers (SAM), (2014).Google Scholar
  45. 45.
    R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7, p 205–212.  https://doi.org/10.1361/105996398770350945 CrossRefGoogle Scholar
  46. 46.
    S. Kikuchi, Y. Hirota, and J. Komotori, Effect of Specimen Hardness and Shot Particle Hardness on Residual Stress and Fatigue Properties of SCM435H Steel Performed by Fine Particle Peening, Zair. Soc. Mater. Sci. Japan., 2010, 60, p 547–553.  https://doi.org/10.2472/jsms.60.547 CrossRefGoogle Scholar
  47. 47.
    K.B. Tator, ASM Handbook, Vol 5B: Protective Organic Coatings, (2015).Google Scholar
  48. 48.
    E. Irissou, J.-G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16, p 661–668.  https://doi.org/10.1007/s11666-007-9086-8 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Alessia Serena Perna
    • 1
  • Antonio Viscusi
    • 1
  • Antonello Astarita
    • 1
    Email author
  • Luca Boccarusso
    • 1
  • Luigi Carrino
    • 1
  • Massimo Durante
    • 1
  • Raffaele Sansone
    • 2
  1. 1.Department of Chemical, Materials and Production EngineeringUniversity of Naples “Federico II”NaplesItaly
  2. 2.Sophia High Tech s.r.lSant’Anastasia, NaplesItaly

Personalised recommendations