Advertisement

Tribological Properties of Typical Zeolitic Imidazolate Frameworks as Grease-Based Lubricant Additives

  • Min Yuan
  • Yu Zhao
  • Wenxing Niu
  • Qi ShiEmail author
  • Hong Xu
  • Bin ZhengEmail author
  • Jinxiang DongEmail author
Article

Abstract

In this study, three different zeolitic imidazolate framework (ZIF) materials of ZIF-8, ZIF-71, and MAF-6 were synthesized, and their tribological properties as base grease were evaluated. We demonstrate that the tribological properties of ZIFs are correlated with the framework density/pore volume and the substituted groups. Under 200 N, MAF-6 has the lowest wear volume value and ZIF-71 exhibits the lowest friction coefficient. As the load increased, MAF-6 maintained the best and most stable tribological performances among the three ZIFs additives; however, the properties of ZIF-71 worsened. Thus, MAF-6 exhibits the lowest density and largest solvent-accessible volume (SAV) and has the lowest elastic stiffness; it easily slides and adheres onto the wear surface, forming a tribofilm that reduces friction and prevents severe wear. ZIF-71 with chlorinated groups may enhance the tribological performance; as the load rises, its dense and stiff structure has an adverse effect. These results are expected to be helpful for designing future ZIFs with excellent lubrication properties.

Keywords

framework group lubricant additive tribological properties wear zeolitic imidazolate framework 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21436008, 21503165, 21776198 and 21822808).

Supplementary material

11665_2019_3911_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2445 kb)

References

  1. 1.
    A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’keeffe, and O.M. Yaghi, Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks, Acc. Chem. Res., 2010, 43(1), p 58–67CrossRefGoogle Scholar
  2. 2.
    J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, and X.-M. Chen, Metal Azolate Frameworks: From Crystal Engineering to Functional Materials, Chem. Rev., 2011, 112(2), p 1001–1033CrossRefGoogle Scholar
  3. 3.
    K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, and O.M. Yaghi, Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks, Proc. Natl. Acad. Sci., 2006, 103(27), p 10186–10191CrossRefGoogle Scholar
  4. 4.
    J.C. Tan, T.D. Bennett, and A.K. Cheetham, Chemical Structure, Network Topology, and Porosity Effects on the Mechanical Properties of Zeolitic Imidazolate Frameworks, Proc. Natl. Acad. Sci., 2010, 107(22), p 9938–9943CrossRefGoogle Scholar
  5. 5.
    B. Chen, Z. Yang, Y. Zhu, and Y. Xia, Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications, J. Mater. Chem. A, 2014, 2(40), p 16811–16831CrossRefGoogle Scholar
  6. 6.
    B.R. Pimentel, A. Parulkar, Ek Zhou, N.A. Brunelli, and R.P. Lively, Zeolitic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations, Chemsuschem, 2014, 7(12), p 3202–3240CrossRefGoogle Scholar
  7. 7.
    J. Yao and H. Wang, Zeolitic Imidazolate Framework Composite Membranes and Thin Films: Synthesis and Applications, Chem. Soc. Rev., 2014, 43(13), p 4470–4493CrossRefGoogle Scholar
  8. 8.
    Y.V. Kaneti, S. Dutta, M.S. Hossain, M.J. Shiddiky, K.L. Tung, F.K. Shieh, C.K. Tsung, K.C.W. Wu, and Y. Yamauchi, Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications, Adv. Mater., 2017, 29(38), p 1700213CrossRefGoogle Scholar
  9. 9.
    J.C. Tan and A.K. Cheetham, Mechanical Properties of Hybrid Inorganic-Organic Framework Materials: Establishing Fundamental Structure-Property Relationships, Chem. Soc. Rev., 2011, 40(2), p 1059–1080CrossRefGoogle Scholar
  10. 10.
    J.-C. Tan, B. Civalleri, C.-C. Lin, L. Valenzano, R. Galvelis, P.-F. Chen, T.D. Bennett, C. Mellot-Draznieks, C.M. Zicovich-Wilson, and A.K. Cheetham, Exceptionally Low Shear Modulus in a Prototypical Imidazole-Based Metal–Organic Framework, Phys. Rev. Lett., 2012, 108(9), p 095502CrossRefGoogle Scholar
  11. 11.
    J.-C. Tan, B. Civalleri, A. Erba, and E. Albanese, Quantum Mechanical Predictions to Elucidate the Anisotropic Elastic Properties of Zeolitic Imidazolate Frameworks: ZIF-4 vs. ZIF-zni, CrystEngComm, 2015, 17(2), p 375–382CrossRefGoogle Scholar
  12. 12.
    M.R. Ryder and J.-C. Tan, Explaining the Mechanical Mechanisms of Zeolitic Metal–Organic Frameworks: Revealing Auxeticity and Anomalous Elasticity, Dalton Trans., 2016, 45(10), p 4154–4161CrossRefGoogle Scholar
  13. 13.
    B. Zheng, Y. Zhu, F. Fu, L.L. Wang, J. Wang, and H. Du, Theoretical Prediction of the Mechanical Properties of Zeolitic Imidazolate Frameworks (ZIFs), RSC Adv., 2017, 7(66), p 41499–41503CrossRefGoogle Scholar
  14. 14.
    J. Li and X.H. Sheng, The Effect of PA6 Content on the Mechanical and Tribological Properties of PA6 Reinforced PTFE Composites, J. Mater. Eng. Perform., 2010, 19(3), p 342–346CrossRefGoogle Scholar
  15. 15.
    J. Wang, F. Shi, T. Nieh, B. Zhao, M. Brongo, S. Qu, and T. Rosenmayer, Thickness Dependence of Elastic Modulus and Hardness of On-Wafer Low-k Ultrathin Polytetrafluoroethylene Films, Scr. Mater., 2000, 42(7), p 687–694CrossRefGoogle Scholar
  16. 16.
    Q. Shi, Z. Chen, Z. Song, J. Li, and J. Dong, Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors, Angew. Chem. Int. Ed., 2011, 50(3), p 672–675CrossRefGoogle Scholar
  17. 17.
    Y.-H. Wang, Q. Shi, H. Xu, and J.-X. Dong, The Synthesis And Tribological Properties of Small-and Large-Sized Crystals of Zeolitic Imidazolate Framework-71, RSC Adv., 2016, 6(22), p 18052–18059CrossRefGoogle Scholar
  18. 18.
    N.W. Khun, E. Mahdi, S. Ying, T. Sui, A.M. Korsunsky, and J.-C. Tan, Fine-Scale Tribological Performance of Zeolitic Imidazolate Framework (ZIF-8) Based Polymer Nanocomposite Membranes, APL Mater., 2014, 2(12), p 124101CrossRefGoogle Scholar
  19. 19.
    T.D. Bennett, J. Sotelo, J.-C. Tan, and S. Moggach, Mechanical Properties of Zeolitic Metal–Organic Frameworks: Mechanically Flexible Topologies and Stabilization Against Structural Collapse, CrystEngComm, 2015, 17(2), p 286–289CrossRefGoogle Scholar
  20. 20.
    X.C. Huang, Y.Y. Lin, J.P. Zhang, and X.M. Chen, Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc (II) Imidazolates with Unusual Zeolitic Topologies, Angew. Chem., 2006, 118(10), p 1587–1589CrossRefGoogle Scholar
  21. 21.
    J. Lara, P.V. Kotvis, and W.T. Tysoe, The Surface Chemistry of Chlorinated Hydrocarbonextreme-Pressure Lubricant Additives, Tribol. Lett., 1997, 3(4), p 303–309CrossRefGoogle Scholar
  22. 22.
    S.J. Asadauskas, G. Biresaw, and T.G. McClure, Effects of Chlorinated Paraffin and ZDDP Concentrations on Boundary Lubrication Properties of Mineral and Soybean Oils, Tribol. Lett., 2010, 37(2), p 111–121CrossRefGoogle Scholar
  23. 23.
    J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, and M. Wiebcke, Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework, Chem. Mater., 2009, 21(8), p 1410–1412CrossRefGoogle Scholar
  24. 24.
    C.-T. He, L. Jiang, Z.-M. Ye, R. Krishna, Z.-S. Zhong, P.-Q. Liao, J. Xu, G. Ouyang, J.-P. Zhang, and X.-M. Chen, Exceptional Hydrophobicity of a Large-Pore Metal–Organic Zeolite, J. Am. Chem. Soc. , 2015, 137(22), p 7217–7223CrossRefGoogle Scholar
  25. 25.
    X. Zhang, H. Xu, and J. Dong, Synthesis and Tribological Performance of Different Particle-Sized Nickel-Ion-Exchanged α-Zirconium Phosphates, J. Mater. Eng. Perform., 2018, 27(4), p 1927–1935CrossRefGoogle Scholar
  26. 26.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’keeffe, and O.M. Yaghi, High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture, Science, 2008, 319(5865), p 939–943CrossRefGoogle Scholar
  27. 27.
    A. Kumar, G.D. Thakre, P.K. Arya, and A.K. Jain, Influence of Operating Parameters on the Tribological Performance of Oleic Acid-Functionalized Cu Nanofluids, Ind. Eng. Chem. Res., 2017, 56(12), p 3527–3541CrossRefGoogle Scholar
  28. 28.
    S. Stupkiewicz and Z. Mróz, A Model of Third Body Abrasive Friction and Wear in Hot Metal Forming, Wear, 1999, 231(1), p 124–138CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Research Institute of Special Chemicals, College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.School of Materials Science and Engineering, Xi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations