Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 2, pp 1201–1212 | Cite as

Processing, As-Cast Microstructure and Wear Characteristics of a Monotectic Al-Bi-Cu Alloy

  • Rodrigo V. Reyes
  • Vitor E. Pinotti
  • Conrado R. M. Afonso
  • Luiz C. Casteletti
  • Amauri Garcia
  • José E. SpinelliEmail author
Article
  • 37 Downloads

Abstract

Ternary Al-based monotectic alloys have a good combination of wear resistance and mechanical strength. While self-lubricating soft elements guarantee an adequate wear resistance, the modification with third elements can increase the ability to support load. In the present investigation, a collection of microstructures is generated through transient directional solidification of the Al-3.2wt.%Bi-3.0wt.%Cu alloy. Samples with different Bi spacing have been subjected to micro-adhesive wear ball tests. A relationship linking the wear volume, V, the microstructural spacing and the test time is proposed for Bi spacing higher than 16 μm, according to which V decreases with the decrease in Bi spacing. It is observed that wider and deeper grooves emerged on the surface of the samples related to more refined Bi and Al2Cu phases, that is, associated with Bi spacing and Bi diameter lower than 16 and 2.4 μm, respectively. A reverse trend is noted for these finer microstructures, for which V increases with further decrease in Bi spacing. This can be caused by the detachment of the very fine and less cohesive Al2Cu lamellas as the Al2O3 oxide breaks up forming debris, with the presence of these lamellas as loose debris at the interface acting as third-body abrasives.

Keywords

Al alloys microstructure monotectics solidification wear 

Notes

Acknowledgments

The authors are grateful to FAPESP (São Paulo Research Foundation, Brazil: Grant 2017/12741-6) and CNPq- National Council for Scientific and Technological Development, for their financial support.

Conflict of interest

The authors of this manuscript declare that they have no conflict of interest.

References

  1. 1.
    A.P. Silva, A. Garcia, and J.E. Spinelli, Microstructure Morphologies During the Transient Solidification of Hypomonotectic and Monotectic Al-Pb Alloys, J. Alloys Compd., 2011, 509, p 10098–10104CrossRefGoogle Scholar
  2. 2.
    R.N. Grugel, T.A. Lograsso, and A. Hellawell, The Solidification of Monotectic Alloys Microstructures and Phase Spacings, Metall. Trans. A, 1984, 15, p 1003–1012CrossRefGoogle Scholar
  3. 3.
    L. Ratke and A. Müller, On the Destabilisation of Fibrous Growth in Monotectic Alloys, Scripta Mater., 2006, 54, p 1217–1220CrossRefGoogle Scholar
  4. 4.
    L.L. Ratke, Theoretical Considerations and Experiments on Microstructural Stability Regimes in Monotectic Alloys, Mater. Sci. Eng. A, 2005, 413–414, p 504–508CrossRefGoogle Scholar
  5. 5.
    I. Ohnuma, T. Saegusa, Y. Takaku, C.P. Wang, X.J. Liu, R. Kainuma, and K. Ishida, Microstructural Evolution of Alloy Powder for Electronic Materials with Liquid Miscibility Gap, J. Electron. Mater., 2009, 38, p 2–9CrossRefGoogle Scholar
  6. 6.
    H. Xie, G.C. Yang, P.Q. La, W.X. Hao, J.F. Fan, and W.M. Liu, Microstructure and Wear Performance of Ni-20wt.%Pb Hypomonotectic Alloys, Mater. Charact., 2004, 52, p 153–158CrossRefGoogle Scholar
  7. 7.
    C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Formation of Immiscible Alloy Powders with Egg-Type Microstructure, Science, 2002, 297, p 990–993CrossRefGoogle Scholar
  8. 8.
    L. Ratke and S. Diefenbach, Liquid Immiscible Alloys, Mater. Sci. Eng. R, 1995, 15, p 263–347CrossRefGoogle Scholar
  9. 9.
    L. Bo, S. Li, L. Wang, D. Wu, M. Zuo, and D. Zhao, Liquid-Liquid Phase Separation and Solidification Behavior of Al55Bi36Cu9 Monotectic Alloy with Different Cooling Rates, Results Phys., 2018, 8, p 1086–1091CrossRefGoogle Scholar
  10. 10.
    P. Jia, J. Zhang, H. Geng, X. Teng, D. Zhao, Z. Yang, Y. Wang, S. Hu, J. Xiang, and X. Hu, High-Efficiency Inhibition of Gravity Segregation in Al-Bi Immiscible Alloys by Adding Lanthanum, Met. Mater. Inter., 2018, 24, p 1262–1274CrossRefGoogle Scholar
  11. 11.
    R. Dai, J.F. Zhang, S.G. Zhang, and J.G. Li, Liquid Immiscibility and Core-Shell Morphology Formation in Ternary Al-Bi-Sn Alloys, Mater. Charact., 2013, 81, p 49–55CrossRefGoogle Scholar
  12. 12.
    W. Chen, L. Mingyang, J. Peng, L. Rongxue, C. Shujing, and G. Haoran, Solidification of Immiscible Al75Bi9Sn16 Alloy with Different Cooling Rates, J. Alloys Compd., 2016, 688, p 18–22CrossRefGoogle Scholar
  13. 13.
    L. Wang, S. Li, L. Bo, D. Wu, and D. Zhao, Liquid–Liquid Phase Separation and Solidification Behavior of Al-Bi-Sn Monotectic Alloy, J. Mol. Liq., 2018, 254, p 333–339CrossRefGoogle Scholar
  14. 14.
    T.A. Costa, M. Dias, E.S. Freitas, L.C. Casteletti, and A. Garcia, The effect of Microstructure Length Scale on Dry Sliding Wear Behaviour of Monotectic Al-Bi-Sn Alloys, J. Alloys Compd., 2016, 689, p 767–776CrossRefGoogle Scholar
  15. 15.
    Metals Handbook, 10th Ed., v.2, ASM Handbook Committee, American Society for Metals, USA, 1990Google Scholar
  16. 16.
    Metals Handbook, 9th Ed., v.2, ASM Handbook Committee, American Society for Metals, USA, 1979Google Scholar
  17. 17.
    Z. Li, Z. Zhang, and X.-G. Chen, The Influence of Cu Addition on Dispersoid Formation and Mechanical Properties of Al-Mn-Mg 3004 Alloy, Metals-Basel, 2018, 8, p 155.  https://doi.org/10.3390/met8030155 CrossRefGoogle Scholar
  18. 18.
    D. Mirkovic, J. Grobner, and R. Schmid-Fetzer, Solidification Paths of Multicomponent Monotectic Aluminum Alloys, Acta Mater., 2008, 56, p 5214–5222CrossRefGoogle Scholar
  19. 19.
    J. Grobner, D. Mirkovic, and R. Schmid-Fetzer, Phase Formation in Multicomponent Monotectic Al-based Alloys, Phase Transformations in Multicomponent Melts, D.M. Herlach, Ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, p 1–17Google Scholar
  20. 20.
    J. Grobner, D. Mirkovic, and R. Schmid-Fetzer, Monotectic Four-Phase Reaction in Al-Bi-Zn Alloys, Acta Mater., 2005, 53, p 3271–3280CrossRefGoogle Scholar
  21. 21.
    S. Engin, U. Boyük, and N. Marasli, The Effects of Microstructure and Growth Rate on Microhardness, Tensile Strength and Electrical Resistivity for Directionally Solidified Al-Ni-Fe Alloys, J. Alloys Compd., 2016, 660, p 23–31CrossRefGoogle Scholar
  22. 22.
    E. Çadirli, U. Boyük, S. Engin, H. Kaya, N. Marasli, K. Keslioglu, and A. Ülgen, Investigation of the Effect of Solidification Processing Parameters on the Rod Spacings and Variation of Microhardness with the Rod Spacing in the Sn-Cu Hypereutectic Alloy, J. Mater. Sci.: Mater. Electron., 2010, 21, p 608–618Google Scholar
  23. 23.
    W.R. Osorio, E.S. Freitas, and A. Garcia, Corrosion Performance Based on Microstructural Array of Al-Based Monotectic Alloys in a NaCl Solution, J. Mater. Eng. Perform., 2014, 23, p 333–341CrossRefGoogle Scholar
  24. 24.
    C. Brito, T. Vida, E. Freitas, N. Cheung, J.E. Spinelli, and A. Garcia, Cellular/Dendritic Arrays and Intermetallic Phases Affecting Corrosion and Mechanical Resistances of an Al-Mg-Si Alloy, J. Alloys Compd., 2016, 673, p 220–230CrossRefGoogle Scholar
  25. 25.
    E.S. Freitas, J.E. Spinelli, L.C. Casteletti, and A. Garcia, Microstructure-Wear Behavior Correlation on a Directionally Solidified Al-In Monotectic Alloy, Tribol. Int., 2013, 66, p 182–186CrossRefGoogle Scholar
  26. 26.
    E.S. Freitas, A.P. Silva, J.E. Spinelli, L.C. Casteletti, and A. Garcia, Inter-Relation of Microstructural Features and Dry Sliding Wear Behavior of Monotectic Al-Bi and Al-Pb Alloys, Tribol. Lett., 2014, 55, p 111–120CrossRefGoogle Scholar
  27. 27.
    T. Man, L. Zhang, Z. Xiang, W. Wang, M. Huang, and E. Wang, Improvement of Microstructure and Wear Property of Al-Bi Alloys by Nd Addition, JOM, 2017,  https://doi.org/10.1007/s11837-017-2613-2 Google Scholar
  28. 28.
    T. Costa, E.S. Freitas, M. Dias, C. Brito, N. Cheung, and A. Garcia, Monotectic Al-Bi- Sn Alloys Directionally Solidified: Effects of Bi Content, Growth Rate and Cooling Rate on the Microstructural Evolution and Hardness, J. Alloys Compd., 2015, 653, p 243–254CrossRefGoogle Scholar
  29. 29.
    M.V. Cante, J.E. Spinelli, N. Cheung, and A. Garcia, The Correlation Between Dendritic Microstructure and Mechanical Properties of Directionally Solidified Hypoeutectic Al-Ni Alloys, Met. Mater. Int., 2010, 16, p 39–49CrossRefGoogle Scholar
  30. 30.
    A.P. Silva, J.E. Spinelli, N. Mangelinck-Noel, and A. Garcia, Microstructural Development During Transient Directional Solidification of a Hypermonotectic Al-Bi Alloy, Mater. Des., 2010, 31, p 4584–4591CrossRefGoogle Scholar
  31. 31.
    K.S. Cruz, E.S. Meza, F.A.P. Fernandes, J.M.V. Quaresma, L.C. Casteletti, and A. Garcia, Dendritic Arm Spacing Affecting Mechanical Properties and Wear Behavior of Al-Sn and Al-Si Alloys Directionally Solidified Under Unsteady-State Conditions, Met. Mater. Trans. A, 2010, 41, p 972–984CrossRefGoogle Scholar
  32. 32.
    T. Savaskan and O. Bican, Dry Sliding Friction and Wear Properties of Al-25Zn-3Cu-3Si Alloy, Tribol. Int., 2010, 43, p 1346–1352CrossRefGoogle Scholar
  33. 33.
    Y.J. Dong and H.M. Wang, Microstructure and Dry Sliding Wear Resistance of Laser Clad TiC Reinforced Ti-Ni-Si Intermetallic Composite Coating, Surf. Coat. Technol., 2009, 204, p 731–735CrossRefGoogle Scholar
  34. 34.
    A.P. Silva, J.E. Spinelli, and A. Garcia, Thermal Parameters and Microstructure During Transient Directional Solidification of a Monotectic Al-Bi Alloy, J. Alloys Compd., 2009, 475, p 347–351CrossRefGoogle Scholar
  35. 35.
    T. Wang, F. Cao, Z. Chen, H. Kang, J. Zhu, Y. Fu, T. Xiao, and T. Li, Three Dimensional Microstructures and Wear Resistance of Al-Bi Immiscible Alloys with Different Grain Refiners, Sci. China Technol. Sci., 2015, 58, p 870–875CrossRefGoogle Scholar
  36. 36.
    G.W. Stachowiak, Wear Materials, Mechanisms and Practice, Tribology in Practice Series Wiley, Hoboken, 2006, p 9–17Google Scholar
  37. 37.
    K.G. Budinski, Guide to Friction, Wear and Erosion Testing, ASTM Stock Number: MNL56, ASTM International, West Conshohocken, 2007, p 86–94Google Scholar
  38. 38.
    D.R. Lide, Ed., Handbook of Aluminium and Aluminium Alloys, CRC Press, Boca Raton, FL, 1992, p 852Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Rodrigo V. Reyes
    • 1
  • Vitor E. Pinotti
    • 1
  • Conrado R. M. Afonso
    • 1
  • Luiz C. Casteletti
    • 2
  • Amauri Garcia
    • 3
  • José E. Spinelli
    • 1
    Email author
  1. 1.Department of Materials EngineeringFederal University of São CarlosSão CarlosBrazil
  2. 2.Department of Materials EngineeringUniversity of São Paulo, USPSão CarlosBrazil
  3. 3.Department of Manufacturing and Materials EngineeringUniversity of Campinas UNICAMPCampinasBrazil

Personalised recommendations