Advertisement

Pulsed TIG Welding–Brazing of Aluminum–Stainless Steel with an Al-Cu Twin Hot Wire

  • Huan HeEmail author
  • Chuansong Wu
  • Sanbao Lin
  • Chunli Yang
Article
  • 43 Downloads

Abstract

A TIG welding–brazing process with a twin aluminum hot wire technique was utilized to control the heat input, improve the joint formation, suppress the interfacial intermetallic compounds (IMCs) and increase the joint strength, thereby creating reliable joints between an aluminum alloy and stainless steel with an ER2319 filler. Twin wires with reasonable diameters and filling modes led to a satisfactory weld of parent metals with varying thicknesses. By the hot wire technique, the reasonable range of the welding current was extended and the thickness of the interfacial IMC at the seam bottom was reduced. In addition, both the tensile strength and stability of the joints increased compared with a cold wire. The IMC consisted of θ-(Fe,Cu)4Al13 and minor Cr0.7Fe0.3Al6, and the precipitated phases in the weld were Al2Cu and Al2CuMg. With an increasing welding current, the IMC thickness significantly increased, while the joint strength decreased. The fracture positions of the joints varied with the corresponding welding currents.

Keywords

aluminum alloy intermetallic stainless steel TIG welding–brazing twin hot wire 

Notes

Acknowledgments

The authors would like to express their appreciation for the financial support from the National Natural Science Foundation of China (Grant No. 51605263), China Postdoctoral Science Foundation (Grant No. 2016M602137) and Key Technologies R&D Program of Shandong Province (Grant No. 2017GGX30134).

References

  1. 1.
    K. Saida, H. Ohnishi, and K. Nishimoto, Fluxless Laser Brazing of Aluminium Alloy to Galvanized Steel Using a Tandem Beam-Dissimilar Laser Brazing of Aluminium Alloy and Steels, Weld. Int., 2010, 24(3), p 161–168CrossRefGoogle Scholar
  2. 2.
    A. Mathieu, S. Pontevicci, J. Viala, E. Cicala, S. Matte, and D. Grevey, Laser Brazing of A Steel/Aluminium Assembly with Hot Filler Wire (88% Al, 12% Si), Mat. Sci. Eng. A, 2006, 435, p 19–28CrossRefGoogle Scholar
  3. 3.
    H. Zhang and J. Liu, Microstructure Characteristics and Mechanical Property of Aluminium alloy/Stainless Steel Lap Joints Fabricated by MIG Welding-Brazing Process, Mat. Sci. Eng. A, 2011, 528(19-20), p 6179–6185CrossRefGoogle Scholar
  4. 4.
    J.L. Song, S.B. Lin, C.L. Yang, G.C. Ma, and H. Liu, Spreading Behavior and Microstructure Characteristics of Dissimilar Metals TIG Welding-Brazing of Aluminum Alloy to Stainless Steel, Mat. Sci. Eng. A, 2009, 509(1-2), p 31–40CrossRefGoogle Scholar
  5. 5.
    L. Agudo, D. Eyidi, C.H. Schmaranzer, E. Arenholz, N. Jank, J. Bruckner, and A.R. Pyzalla, Intermetallic FexAly-Phases in a Steel/Al-Alloy Fusion Weld, J. Mater. Sci., 2007, 42(12), p 4205–4214CrossRefGoogle Scholar
  6. 6.
    X. Li, A. Scherf, M. Heilmaier, and F. Stein, The Al-Rich Part of the Fe-Al Phase Diagram, J. Phase Equilib. Diffus., 2016, 37(2), p 162–173CrossRefGoogle Scholar
  7. 7.
    E.R. Naimon, J.H. Doyle, C.R. Rice, D. Vigil, and D.R. Walmsley, Diffusion Welding of Aluminum to Stainless Steel, Weld. J., 1981, 60(11), p 17–20Google Scholar
  8. 8.
    J.H. Kong, M. Okumiya, Y. Tsunekawa, K.Y. Yun, S.G. Kim, and M. Yoshida, A Novel Bonding Method of Pure Aluminum and SUS304 Stainless Steel Using Barrel Nitriding, Metall. Mater. Trans. A, 2014, 45(10), p 4443–4453CrossRefGoogle Scholar
  9. 9.
    H. Yu and Y. Tong, Magnetic Pulse Welding of Aluminum to Steel Using Uniform Pressure Electromagnetic Actuator, Int. J. Adv. Manuf. Tech., 2017, 91(5-8), p 2257–2265CrossRefGoogle Scholar
  10. 10.
    M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, and A.B. Ismail, Advances in Friction Welding Process: a Review, Sci. Technol. Weld. Join., 2010, 15(7), p 534–558CrossRefGoogle Scholar
  11. 11.
    W. Li, A. Vairis, M. Preuss, and T. Ma, Linear and Rotary Friction Welding Review, Int. Mater. Rev., 2016, 61(2), p 71–100CrossRefGoogle Scholar
  12. 12.
    A. Simar and M.-N. Avettand-Fènoël, State of the Art about Dissimilar Metal Friction Stir Welding, Sci. Technol. Weld. Join., 2017, 22(5), p 389–403CrossRefGoogle Scholar
  13. 13.
    T. Debroy and H.K.D.H. Bhadeshia, Friction Stir Welding of Dissimilar Alloys-a Perspective, Sci. Technol. Weld. Join., 2010, 15(4), p 266–270CrossRefGoogle Scholar
  14. 14.
    M. Reddy, S. Rao, and T. Mohandas, Role of Electroplated Interlayer in Continuous Drive Friction Welding of AA6061 to AISI, 304 Dissimilar Metals, Sci. Technol. Weld. Join., 2008, 13(7), p 619–628CrossRefGoogle Scholar
  15. 15.
    G. Zhang, W. Su, J. Zhang, and Z. Wei, Friction Stir Brazing: a Novel Process for Fabricating Al/Steel Layered Composite and for Dissimilar Joining of Al to Steel, Metall. Mater. Trans. A, 2011, 42(9), p 2850–2861CrossRefGoogle Scholar
  16. 16.
    F.W. Bach, A. Beniyash, K. Lau, and R. Versemann, Joining of Steel-Aluminium Hybrid Structures with Electron Beam on Atmosphere, Adv. Mater. Res., 2005, 6, p 143–150CrossRefGoogle Scholar
  17. 17.
    P. Wang, X. Chen, Q. Pan, B. Madigan, and J. Long, Laser Welding Dissimilar Materials of Aluminum to Steel: an Overview, Int. J. Adv. Manuf. Tech., 2016, 87(9), p 3081–3090CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, J. Huang, Z. Cheng, Z. Ye, H. Chi, L. Peng, and S. Chen, Study on MIG-TIG Double-Sided Arc Welding-Brazing of Aluminum and Stainless Steel, Mater. Lett., 2016, 172, p 146–148CrossRefGoogle Scholar
  19. 19.
    Y. Shi, G. Zhang, Y. Huang, L. Lu, J. Huang, and Y. Shao, Pulsed Double-Electrode GMAW-Brazing for Joining of Aluminum to Steel, Weld. J., 2014, 93(6), p 216–224Google Scholar
  20. 20.
    S. Madhavan, M. Kamaraj, and L. Vijayaraghavan, Microstructure and Mechanical Properties of Cold Metal Transfer Welded Aluminium/Dual Phase Steel, Sci. Technol. Weld. Join., 2016, 21(3), p 194–200CrossRefGoogle Scholar
  21. 21.
    G. Qin, Y. Su, X. Meng, and B. Fu, Numerical Simulation on MIG Arc Brazing-fusion Welding of Aluminum Alloy to Galvanized Steel Plate, Int. J. Adv. Manuf. Tech., 2015, 78(9), p 1917–1925CrossRefGoogle Scholar
  22. 22.
    H. Ma, G. Qin, X. Bai, L. Wang, and Z. Liang, Effect of Initial Temperature on Joint of Aluminum Alloy to Galvanized Steel Welded by MIG Arc Brazing-fusion Welding Process, Int. J. Adv. Manuf. Tech., 2016, 86(9), p 3135–3143CrossRefGoogle Scholar
  23. 23.
    S. Lin, J. Song, C. Yang, C. Fan, and D. Zhang, Brazability of Dissimilar Metals Tungsten Inert Gas Butt Welding-brazing between Aluminum Alloy and Stainless Steel with Al-Cu Filler Metal, Mater. Des., 2010, 31(5), p 2637–2642CrossRefGoogle Scholar
  24. 24.
    J. Yang, Y. Li, H. Zhang, W. Guo, and Y. Zhou, Control of Interfacial Intermetallic Compounds in Fe-Al Joining by Zn Addition, Mat. Sci. Eng. A, 2015, 645, p 323–327CrossRefGoogle Scholar
  25. 25.
    Y. Su, X. Hua, and Y. Wu, Influence of Alloy Elements on Microstructure and Mechanical Property of Aluminum-Steel Lap Joint Made by Gas Metal Arc Welding, J. Mater. Process. Tech., 2014, 214(4), p 750–755CrossRefGoogle Scholar
  26. 26.
    L.A. Jácome, S. Weber, A. Leitner, E. Arenholz, J. Bruckner, H. Hackl, and A.R. Pyzalla, Influence of Filler Composition on the Microstructure and Mechanical Properties of Steel-Aluminum Joints Produced by Metal Arc Joining, Adv. Eng. Mater., 2009, 11(5), p 350–358CrossRefGoogle Scholar
  27. 27.
    H. Springer, A. Szczepaniak, and D. Raabe, On the Role of Zinc on the Formation and Growth of Intermetallic Phases During Interdiffusion Between Steel and Aluminium alloys, Acta Mater., 2015, 96, p 203–211CrossRefGoogle Scholar
  28. 28.
    S. Chen, J. Huang, K. Ma, X. Zhao, and A. Vivek, Microstructures and Mechanical Properties of Laser Penetration Welding Joint With/Without Ni-Foil in an Overlap Steel-on-Aluminum Configuration, Metall. Mater. Trans. A, 2014, 45(7), p 3064–3073CrossRefGoogle Scholar
  29. 29.
    S. Chen, Z. Zhai, J. Huang, X. Zhao, and J. Xiong, Interface Microstructure and Fracture Behavior of Single/Dual-beam Laser Welded Steel-Al Dissimilar Joint Produced with Copper Interlayer, Int. J. Adv. Manuf. Tech., 2016, 82(1-4), p 631–643CrossRefGoogle Scholar
  30. 30.
    B. Mezrag, F. Deschaux-Beaume, and M. Benachour, Control of Mass and Heat Transfer for Steel/Aluminium Joining Using Cold Metal Transfer Process, Sci. Technol. Weld. Join., 2015, 20(3), p 189–198CrossRefGoogle Scholar
  31. 31.
    R. Borrisutthekul, T. Yachi, Y. Miyashita, and Y. Mutoh, Suppression of Intermetallic Reaction Layer Formation by Controlling Heat Flow in Dissimilar Joining of Steel and Aluminum Alloy, Mat. Sci. Eng. A, 2007, 467(1-2), p 108–113CrossRefGoogle Scholar
  32. 32.
    M. Rathod and M. Kutsuna, Joining of Aluminum Alloy 5052 and Low-carbon Steel by Laser Roll Welding, Weld. J., 2004, 83(1), p 16–26Google Scholar
  33. 33.
    S. Zinn and S.L. Semiatin, Elements of Induction Heating: Design, Control, and Applications, ASM International, Russell Township, 1988Google Scholar
  34. 34.
    J. Song, S. Lin, C. Yang, C. Fan, and G. Ma, Analysis of Intermetallic Layer in Dissimilar TIG Welding-Brazing Butt Joint of Aluminium Alloy to Stainless Steel, Sci. Technol. Weld. Join., 2010, 15(3), p 213–218CrossRefGoogle Scholar
  35. 35.
    J.L. Murray, The Al-Cr (Aluminum-Chromium) System, J. Phase Equilib., 1998, 19(4), p 367–375CrossRefGoogle Scholar
  36. 36.
    Fvd Woude and P.J. Schurer, A Study of Quasi-crystalline Al-Fe Alloys by Mössbauer-effect Spectroscopy and Diffraction Techniques, Can. J. Phys., 1987, 65(10), p 1301–1308CrossRefGoogle Scholar
  37. 37.
    K. Barmak and V. Dybkov, Interaction of Iron-chromium Alloys Containing 10 and 25 Mass% Chromium with Liquid Aluminium Part II, Formation of Intermetallic Compounds, J. Mater. Sci., 2004, 39(13), p 4219–4230CrossRefGoogle Scholar
  38. 38.
    S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50(4), p 193–215CrossRefGoogle Scholar
  39. 39.
    C. Zhang, M. Gao, G. Li, C. Chen, and X. Zeng, Strength Improving Mechanism of Laser Arc Hybrid Welding of Wrought AA 2219 Aluminium Alloy using AlMg5 Wire, Sci. Technol. Weld. Join., 2013, 18(8), p 703–710CrossRefGoogle Scholar
  40. 40.
    J. Li, Research on Technology of Variable Polarity Plasma Arc Welding with Twin-wire Filler, Master Thesis, Harbin Institute of Technology (2009)Google Scholar
  41. 41.
    Z. Sun, M. Kuo and D. P, Twin Wire Gas Tungsten Arc Cladding, SIMTech Technical Report (PT/99/004/JT) (1999)Google Scholar
  42. 42.
    Z. Ye, J. Huang, Z. Cheng, W. Gao, Y. Zhang, S. Chen, and J. Yang, Combined Effects of MIG and TIG Arcs on Weld Appearance and Interface Properties in Al/steel Double-sided Butt Welding-brazing, J. Mater. Process. Technol., 2017, 250, p 25–34CrossRefGoogle Scholar
  43. 43.
    J. Xue, Y. Li, H. Chen, and Z. Zhu, Effects of Heat Input on Wettability, Interface Microstructure and Properties of Al/steel Butt Joint in Laser-metal Inert-gas Hybrid Welding-brazing, J. Mater. Process. Technol., 2018, 255, p 47–54CrossRefGoogle Scholar
  44. 44.
    L. Li, H. Xia, C. Tan, and N. Ma, Effect of Groove Shape on Laser Welding-brazing Al to Steel, J. Mater. Process. Technol., 2018, 252, p 573–581CrossRefGoogle Scholar
  45. 45.
    L. Shao, Y. Shi, J.K. Huang, and S.J. Wu, Effect of Joining Parameters on Microstructure of Dissimilar Metal Joints Between Aluminum and Galvanized Steel, Mater. Des., 2015, 66, p 453–458CrossRefGoogle Scholar
  46. 46.
    E. Ünel and E. Taban, Properties and Optimization of Dissimilar Aluminum Steel CMT Welds, Weld. World, 2017, 61(1), p 1–9CrossRefGoogle Scholar
  47. 47.
    S. Meco, S. Ganguly, S. Williams, and N. Mcpherson, Effect of Laser Processing Parameters on the Formation of Intermetallic Compounds in Fe-Al Dissimilar Welding, J. Mater. Eng. Perform., 2014, 23(9), p 3361–3370CrossRefGoogle Scholar
  48. 48.
    J. Sun, Q. Yan, W. Gao, and J. Huang, Investigation of Laser Welding on Butt Joints of Al/steel Dissimilar Materials, Mater. Des., 2015, 83, p 120–128CrossRefGoogle Scholar
  49. 49.
    U. Reisgen, C. Otten, and J. Schoenberger, Investigations about the Influence of the Time-temperature Curve on the Formation of Intermetallic Phases During Electron Beam Welding of Steel-Aluminium Material Combinations, Weld. World, 2014, 58(4), p 443–454CrossRefGoogle Scholar
  50. 50.
    V.S. Zolotorevsky, N.A. Belov, and M.V. Glazoff, Casting Aluminum Alloys, Elsevier Science, Amsterdam, 2007CrossRefGoogle Scholar
  51. 51.
    Z. Ye, J. Huang, W. Gao, Y. Zhang, Z. Cheng, S. Chen, and J. Yang, Microstructure and Mechanical Properties of 5052 Aluminum Alloy/Mild Steel Butt Joint Achieved by MIG-TIG Double-sided Arc Welding-Brazing, Mater. Des., 2017, 123, p 69–79CrossRefGoogle Scholar
  52. 52.
    E. Schubert, M. Klassen, I. Zerner, C. Walz, and G. Sepold, Light-weight Structures Produced by Laser Beam Joining for Future Applications in Automobile and Aerospace Industry, J. Mater. Process. Technol., 2001, 115(1), p 2–8CrossRefGoogle Scholar
  53. 53.
    H. He, S. Lin, C. Yang, C. Fan, and Z. Chen, Combination Effects of Nocolok Flux with Ni Powder on Properties and Microstructures of Aluminum-Stainless Steel TIG Welding-Brazing Joint, J. Mater. Eng. Perform., 2013, 22(11), p 3315–3323CrossRefGoogle Scholar
  54. 54.
    M. Yan and Z. Fan, Review Durability of Materials in Molten Aluminum Alloys, J. Mater. Sci., 2001, 36(2), p 285–295CrossRefGoogle Scholar
  55. 55.
    C. Tan, J. Yang, X. Zhao, K. Zhang, X. Song, B. Chen, L. Li, and J. Feng, Influence of Ni Coating on Interfacial Reactions and Mechanical Properties in Laser Welding-brazing of Mg/Ti Butt Joint, J. Alloys Compd., 2018, 764, p 186–201CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Huan He
    • 1
    • 2
    Email author
  • Chuansong Wu
    • 1
  • Sanbao Lin
    • 2
  • Chunli Yang
    • 2
  1. 1.MOE Key Laboratory for Liquid–Solid Evolution and Materials Processing, Institute of Materials JoiningShandong UniversityJinanChina
  2. 2.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina

Personalised recommendations