Advertisement

Comparative Study of Oxides Formed on Fusion Zone and Base Metal of Laser Welded Zr-1.0Sn-1.0Nb-0.1Fe Alloy

  • Chuang Cai
  • Liqun Li
  • Genchen Peng
Article
  • 12 Downloads

Abstract

Numerous studies have primarily focused on the corrosion mechanism of zirconium alloy base metal. However, the corrosion resistance of weld beads or seams is of vital importance in the degradation of structural components in the reactor. In the present work, the corrosion resistance of the fusion zone and base metal of laser welded zirconium alloy joints was comparatively investigated. The microstructure morphologies, phase structures and strain fields of oxide films formed on fusion zone and base metal were observed and analyzed. The oxide thickness of the fusion zone was thicker than that of the base metal with prolonged corrosion. Compared to the base metal, the lower density of dislocations and level of strain values in the oxide film of the fusion zone indicated that the stress in the oxide film was lower. The phase transition from the tetragonal ZrO2 to the monoclinic ZrO2 could be suppressed due to the high level of stress, resulting in the better corrosion resistance of the base metal. Moreover, the second phase particles and non-βZr phase in the base metal contributed to the better corrosion resistance.

Keywords

grain morphology laser welded fusion zone oxide film strain field zirconium alloys 

Notes

Acknowledgments

The gratitude was expressed to Mrs. Xue Hou and Mr. Huirong Zhao for their help in the corrosion experiments. The authors appreciated the help from Mrs. Xue Liang and Mr. Long Xu for the TEM experiments. We also appreciated Dr. Caiwang Tan for the valuable suggestions.

References

  1. 1.
    C.Q. Xia, Z.H. Feng, Y.H. Yang, Z.G. Zhang, R. Jing, B. Pan, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Microstructure and Corrosion Behavior of the Annealed Zr-40Ti-5Al-4V Alloys, J. Alloys Compd., 2016, 666, p 301–308CrossRefGoogle Scholar
  2. 2.
    T. Kim, K.J. Choi, S.C. Yoo, Y. Lee, and H.K. Ji, Influence of Dissolved Hydrogen on the Early Stage Corrosion Behavior of Zirconium Alloys in Simulated Light Water Reactor Coolant Conditions, Corros. Sci., 2018, 131, p 235–244CrossRefGoogle Scholar
  3. 3.
    N. Ni, S. Lozano-Perez, J.M. Sykes, G.D.W. Smith, and C.R.M. Grovenor, Focussed Ion Beam Sectioning for the 3D Characterisation of Cracking in Oxide Scales Formed on Commercial ZIRLO™ Alloys During Corrosion in High Temperature Pressurised Water, Corros. Sci., 2011, 53, p 4073–4083CrossRefGoogle Scholar
  4. 4.
    A. Yilmazbayhan, A.T. Motta, R.J. Comstock, G.P. Sabol, B. Lai, and Z. Cai, Structure of Zirconium Alloy Oxides Formed in Pure Water Studied with Synchrotron Radiation and Optical Microscopy: Relation to Corrosion Rate, J. Nucl. Mater., 2004, 324, p 6–22CrossRefGoogle Scholar
  5. 5.
    W. Harlow, H. Ghassemi, and M.L. Taheri, Determination of the Initial Oxidation Behavior of Zircaloy-4 by In Situ TEM, J. Nucl. Mater., 2016, 474, p 126–133CrossRefGoogle Scholar
  6. 6.
    N.B. Pilling and R.E. Bedworth, The Oxidation of Metals at High Temperatures, J. Inst. Met., 1923, 29, p 529–591Google Scholar
  7. 7.
    S.J. Xie, B.X. Zhou, X. Liang, W.Q. Liu, H. Li, Q. Li, M.Y. Yao, and J.L. Zhang, A Novel Mechanism for Nodular Corrosion of Zircaloy-4 Corroded in 773 K Superheated Steam, Corros. Sci., 2017, 126, p 44–54CrossRefGoogle Scholar
  8. 8.
    A. Yilmazbayhan, E. Breval, A.T. Motta, and R.J. Comstock, Transmission Electron Microscopy Examination of Oxide Layers Formed on Zr Alloys, J. Nucl. Mater., 2006, 349, p 265–281CrossRefGoogle Scholar
  9. 9.
    W.J. Gong, H.L. Zhang, Y. Qiao, H. Tian, X.D. Ni, Z.K. Li, and X.T. Wang, Grain Morphology and Crystal Structure of Pre-Transition Oxides Formed on Zircaloy-4, Corros. Sci., 2013, 74, p 323–331CrossRefGoogle Scholar
  10. 10.
    W. Qin, C. Nam, H. Li, and J. Szpunar, Tetragonal Phase Stability in ZrO2 Film Formed on Zirconium Alloys and Its Effects on Corrosion Resistance, Acta Mater., 2007, 55, p 1695–1701CrossRefGoogle Scholar
  11. 11.
    A.H. Heuer and M. Rühle, Overview No. 45: On the Nucleation of the Martensitic Transformation in Zirconia (ZrO2), Acta Metall., 1985, 33, p 2101–2112CrossRefGoogle Scholar
  12. 12.
    W. Harlow, A.C. Lang, B.J. Demaske, S.R. Phillpot, and M.L. Taheri, Thickness-Dependent Stabilization of Tetragonal ZrO2 in Oxidized Zirconium, Scr. Mater., 2018, 145, p 95–98CrossRefGoogle Scholar
  13. 13.
    P. Tejland and H.O. Andrén, Origin and Effect of Lateral Cracks in Oxide Scales Formed on Zirconium Alloys, J. Nucl. Mater., 2012, 430, p 64–71CrossRefGoogle Scholar
  14. 14.
    K. Annand, M. Nord, I. Maclaren, and M. Gass, The Corrosion of Zr(Fe, Cr)2 and Zr2Fe Secondary Phase Particles in Zircaloy-4 Under 350 °C Pressurised Water Conditions, Corros. Sci., 2017, 128, p 213–223CrossRefGoogle Scholar
  15. 15.
    H.G. Kim, S.Y. Park, M.H. Lee, Y.H. Jeong, and S.D. Kim, Corrosion and Microstructural Characteristics of Zr-Nb Alloys with Different Nb Contents, J. Nucl. Mater., 2008, 373, p 429–432CrossRefGoogle Scholar
  16. 16.
    H.G. Kim, Y.H. Jeong, and T.H. Kim, Effect of Isothermal Annealing on the Corrosion Behavior of Zr-xNb Alloys, J. Nucl. Mater., 2004, 326, p 125–131CrossRefGoogle Scholar
  17. 17.
    Y.H. Jeong, H.G. Kim, and T.H. Kim, Effect of β Phase, Precipitate and Nb-Concentration in Matrix on Corrosion and Oxide Characteristics of Zr-xNb Alloys, J. Nucl. Mater., 2003, 317, p 1–12CrossRefGoogle Scholar
  18. 18.
    Y.H. Jeong, H.G. Kim, D.J. Kim, B.K. Choi, and J.H. Kim, Influence of Nb Concentration in the α-Matrix on the Corrosion Behavior of Zr-xNb Binary Alloys, J. Nucl. Mater., 2003, 323, p 72–80CrossRefGoogle Scholar
  19. 19.
    G. Sundell, M. Thuvander, and H.O. Andrén, Enrichment of Fe and Ni at Metal and Oxide Grain Boundaries in Corroded Zircaloy-2, Corros. Sci., 2012, 65, p 10–12CrossRefGoogle Scholar
  20. 20.
    J.H. Hu, L. Yang, G.Q. Cao, Y.F. Yun, G.H. Yuan, Q. Yue, and G.S. Shao, On the Oxidation Behavior of (Zr, Nb)2Fe Under Simulated Nuclear, Corros. Sci., 2016, 112, p 718–723CrossRefGoogle Scholar
  21. 21.
    B.R. Tao, R.S. Qiu, Y.F. Zhao, Y.S. Liu, X.N. Tan, B.F. Luan, and Q. Liu, Effects of Alloying Elements (Sn, Cr and Cu) on Second Phase Particles in Zr-Sn-Nb-Fe-(Cr, Cu) Alloys, J. Alloys Compd., 2018, 748, p 745–757CrossRefGoogle Scholar
  22. 22.
    J. Wei, P. Frankel, E. Polatidis, M. Blat, A. Ambard, R.J. Comstock, L. Hallstadius, D. Hudson, G.D.W. Smith, C.R.M. Grovenor, M. Klaus, R.A. Cottis, S. Lyon, and M. Preuss, The Effect of Sn on Autoclave Corrosion Performance and Corrosion Mechanisms in Zr-Sn-Nb Alloys, Acta Mater., 2013, 61, p 4200–4214CrossRefGoogle Scholar
  23. 23.
    W.J. Gong, H.L. Zhang, C.F. Wu, H. Tian, and X.T. Wang, The Role of Alloying Elements in the Initiation of Nanoscale Porosity in Oxide Films Formed on Zirconium Alloys, Corros. Sci., 2013, 77, p 391–396CrossRefGoogle Scholar
  24. 24.
    N. Ni, S. Lozano-Perez, M.L. Jenkins, C. English, G.D.W. Smith, J.M. Sykes, and C.R.M. Grovenor, Porosity in Oxides on Zirconium Fuel Cladding Alloys, and Its Importance in Controlling Oxidation Rates, Scr. Mater., 2010, 62, p 564–567CrossRefGoogle Scholar
  25. 25.
    S.G. McDonald, Mechanism of Accelerated Corrosion in Zircaloy-4 Laser and Electron-Beam Welds, in Zirconium in the Nuclear Industry: Fifth International Symposium (ASTM STP 754, American Society for Testing and Materials, 1982).Google Scholar
  26. 26.
    K. Une and S. Ishimoto, Crystallographic Measurement of the β to α Phase Transformation and δ-Hydride Precipitation in a Laser-Welded Zircaloy-2 Tube by Electron Backscattering Diffraction, J. Nucl. Mater., 2009, 389, p 436–442CrossRefGoogle Scholar
  27. 27.
    N.A.P. Kiran Kumar, J.A. Szpunar, and Z. He, Microstructural Studies and Crystallographic Orientation of Different Zones and δ-Hydrides in Resistance Welded Zircaloy-4 sheets, J. Nucl. Mater., 2011, 414, p 341–351CrossRefGoogle Scholar
  28. 28.
    M.Y. Yao, B.X. Zhou, Q. Li, W.Q. Liu, and Y.L. Chu, The Effect of Alloying Modifications on Hydrogen Uptake of Zirconium-Alloy Welding Specimens During Corrosion Tests, J. Nucl. Mater., 2006, 350, p 195–201CrossRefGoogle Scholar
  29. 29.
    C. Cai, L.Q. Li, W. Tao, G.C. Peng, and X. Wang, Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding, J. Mater. Eng. Perform., 2016, 25, p 3783–3792CrossRefGoogle Scholar
  30. 30.
    W. Tao, C. Cai, L.Q. Li, Y.B. Chen, and Y.L. Wang, Pulsed Laser Spot Welding of Intersection Points for Zircaloy-4 Spacer Grid Assembly, Mater. Des., 2013, 52, p 487–494CrossRefGoogle Scholar
  31. 31.
    D. Gosset, M. Le Saux, D. Simeone, and D. Gilbon, New Insights in Structural Characterization of Zirconium Alloys Oxidation at High Temperature, J. Nucl. Mater., 2012, 429, p 19–24CrossRefGoogle Scholar
  32. 32.
    G.P. Sabol, G.P. Kilp, M.G. Balfour, E. Roberts, Development of a Cladding Alloy for High Burnup, in 8th International Symposium, Zirconium in the Nuclear Industry (ASTM International, STP 1023, San Diego, 1989), p 227–244Google Scholar
  33. 33.
    R.C. Garvie and P.S. Nicholson, Phase Analysis in Zirconia System, J. Am. Ceram. Soc., 1972, 55, p 303–305CrossRefGoogle Scholar
  34. 34.
    N. Ni, D. Hudson, J. Wei, P. Wang, S. Lozano-Perez, G.D.W. Smith, J.M. Sykes, S.S. Yardley, K.L. Moore, S. Lyon, R. Cottis, M. Preuss, and C.R.M. Grovenor, How the Crystallography and Nanoscale Chemistry of the Metal/Oxide Interface Develops During the Aqueous Oxidation of Zirconium Cladding Alloys, Acta Mater., 2012, 60, p 7132–7149CrossRefGoogle Scholar
  35. 35.
    J.Y. Park, B.K. Choi, Y.H. Jeong, and Y.H. Jung, Corrosion Behavior of Zr Alloys with a High Nb Content, J. Nucl. Mater., 2005, 340, p 237–246CrossRefGoogle Scholar
  36. 36.
    C. Proff, S. Abolhassani, and C. Lemaignan, Oxidation Behaviour of Zirconium Alloys and Their Precipitates—A Mechanistic Study, J. Nucl. Mater., 2013, 432, p 222–238CrossRefGoogle Scholar
  37. 37.
    D. Pêcheur, F. Lefebvre, A.T. Motta, C. Lemaignan, and J.F. Wadier, Precipitate Evolution in the Zircaloy-4 Oxide Layer, J. Nucl. Mater., 1992, 189, p 318–332CrossRefGoogle Scholar
  38. 38.
    M.Y. Yao, Y.F. Shen, Q. Li, J.C. Peng, B.X. Zhou, and J.L. Zhang, The Effect of Final Annealing After β-Quenching on the Corrosion Resistance of Zircaloy-4 in Lithiated Water with 0.04 M LiOH, J. Nucl. Mater., 2013, 435, p 63–70CrossRefGoogle Scholar
  39. 39.
    D.J. Park and J.Y. Park, Quantitative Measurement of Displacement and Strain Fields in the ZrO2 Layer During the Transition to Nodular Oxidation, Corros. Sci., 2013, 69, p 61–66CrossRefGoogle Scholar
  40. 40.
    M. Chollet, S. Valance, S. Abolhassani, G. Stein, D. Grolimund, M. Martin, and J. Bertsch, Synchrotron X-Ray Diffraction Investigations on Strains in the Oxide Layer of an Irradiated Zircaloy Fuel Cladding, J. Nucl. Mater., 2017, 488, p 181–190CrossRefGoogle Scholar
  41. 41.
    N. Vermaak, G. Parry, R. Estevez, and Y. Bréchet, New Insight into Crack Formation During Corrosion of Zirconium-Based Metal-Oxide Systems, Acta Mater., 2013, 61, p 4374–4383CrossRefGoogle Scholar
  42. 42.
    X.Y. Yu, Z.Y. Jiang, J.W. Zhao, D.B. Wei, C.L. Zhou, and Q.X. Huang, Effect of a Grain-Refined Microalloyed Steel Substrate on the Formation Mechanism of a Tight Oxide Scale, Corros. Sci., 2014, 85, p 115–125CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina

Personalised recommendations