Journal of Materials Engineering and Performance

, Volume 28, Issue 2, pp 908–915 | Cite as

Effects of Thermal Exposure on the Microstructure and Mechanical Properties of Al-Si-Cu-Ni-Mg-Gd Alloy

  • Yudong Sui
  • Lina HanEmail author
  • Qudong WangEmail author


The present study focused on the effect of thermal exposure on the phase evolution and properties of the cast-T6 Al-12Si-4Cu-2Ni-0.8Mg-xGd (x = 0, 0.1, and 0.2) alloy used for cast piston.The thermal stability of the alloys was studied in the temperature range of 200-300 °C for exposure duration up to 500 h, thus obtaining the relationship between the microstructural evolution and its impact on the mechanical properties. The fine Al2Cu phase grew into the coarse θ-Al2Cu phases during the thermal exposure, resulting in a decrease in the mechanical strength of the alloy. The thermal stability and stiffness of the Al-Si-Cu-Ni-Mg alloys were improved with the increase in Gd content from 0 to 0.2%.


Al-Si-Cu-Ni-Mg-Gd alloy microstructure physical properties tensile properties thermal exposure 



This project funded by the National Natural Science Foundation of China (No. 51802134), China Postdoctoral Science Foundation (No. 2018T110999), Yunnan Provincial Department of Education Science Research Fund Project (No. 2018JS033), and Yunnan Postdoctoral Science Foundation.


  1. 1.
    P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nag, J. Kaduk, S. Shankar, R. Banerjee, and T. Shibata, Probing the Local Atomic Structure of Sr-Modified Al-Si Alloys, Acta Mater., 2014, 65, p 185–193CrossRefGoogle Scholar
  2. 2.
    J.H. Chen, E. Costan, M.A. van Huis, Q. Xu, and H.W. Zandbergen, Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys, Science, 2006, 312, p 416–419CrossRefGoogle Scholar
  3. 3.
    A. Bjurenstedt, D. Casari, S. Seifeddine, R.H. Mathiesen, and A.K. Dahle, In-Situ Study of Morphology and Growth of Primary α-Al(FeMnCr)Si Intermetallics in an Al-Si Alloy, Acta Mater., 2017, 130, p 1–9CrossRefGoogle Scholar
  4. 4.
    Y. Birol, Melt Treatment of Al-Si Foundry Alloys with B and Sr Additions, J. Mater. Sci., 2017, 52, p 6856–6865CrossRefGoogle Scholar
  5. 5.
    A. Bjurenstedt, S. Seifeddine, and A.E.W. Jarfors, The Effects of Fe-Particles on the Tensile Properties of Al-Si-Cu Alloys, Metals, 2016, 6, p 314–329CrossRefGoogle Scholar
  6. 6.
    A. Morozova, A. Mogucheva, D. Bukin, O. Lukuanova, N. Korotkova, N. Belov, and R. Kaibyshev, Effect of Si and Zr on the Microstructure and Properties of Al-Fe-Si-Zr Alloys, Metals, 2017, 7, p 495–507CrossRefGoogle Scholar
  7. 7.
    G. Rajaram, S. Kumaran, and T.S. Rao, Effect of Graphite and Transition Elements (Cu, Ni) on High Temperature Tensile Behaviour of Al-Si Alloys, Mater. Chem. Phys., 2011, 128, p 62–69CrossRefGoogle Scholar
  8. 8.
    Z. Asghar, G. Requena, H.P. Degischer, and P. Cloetens, Three-Dimensional Study of Ni Aluminides in an AlSi12 Alloy by Means of Light Optical and Synchrotron Microtomography, Acta Mater., 2009, 57, p 4125–4132CrossRefGoogle Scholar
  9. 9.
    M. Zeren, The Effect of Heat-Treatment on Aluminum-Based Piston Alloys, Mater. Des., 2007, 28, p 2511–2517CrossRefGoogle Scholar
  10. 10.
    Y. Sui, D. Ji, L. Han, and Q. Wang, Characterization of the Aging Precipitates of Al-12Si-4Cu-2Ni-0.8Mg-0.2Gd Pistion Alloy, JOM, 2018, Google Scholar
  11. 11.
    M. Zhu, Z. Jian, L. Yao, C. Liu, G. Yang, and Y. Zhou, Effect of Mischmetal Modification Treatment on the Microstructure, Tensile Properties, and Fracture Behavior of Al-7.0%Si-0.3%Mg Foundry Aluminum Alloys, J. Mater. Sci., 2010, 46, p 2685–2694CrossRefGoogle Scholar
  12. 12.
    W. Kasprzak, B.S. Amirkhiz, and M. Niewczas, Structure and Properties of Cast Al-Si Based Alloy with Zr-V-Ti Additions and Its Evaluation of High Temperature Performance, J. Alloy. Compd., 2014, 595, p 67–79CrossRefGoogle Scholar
  13. 13.
    J.B. Ferguson, H.F. Lopez, K. Cho, and C.-S. Kim, Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys, Metals, 2016, 6, p 43–55CrossRefGoogle Scholar
  14. 14.
    Y. Zhou, Z. Liu, S. Bai, P. Ying, and L. Lin, Effect of Ag Additions on the Lengthening Rate of Ω Plates and Formation of σ Phase in Al-Cu-Mg Alloys During Thermal Exposure, Mater. Charact., 2017, 123, p 1–8CrossRefGoogle Scholar
  15. 15.
    O.R. Myhr, Ø. Grong, and S.J. Andersen, Modelling of the Age Hardening Behaviour of Al-Mg-Si Alloys, Acta Mater., 2001, 49, p 65–75CrossRefGoogle Scholar
  16. 16.
    L. Ceschini, A. Morri, A. Morri, and M.D. Sabatino, Effect of Thermal Exposure on the Residual Hardness and Tensile Properties of the EN AW-2618A Piston Alloy, Mater. Sci. Eng., A, 2015, 639, p 288–297CrossRefGoogle Scholar
  17. 17.
    M. Colombo, E. Gariboldi, and A. Morri, Er Addition to Al-Si-Mg-Based Casting Alloy: Effects on Microstructure, Room and High Temperature Mechanical Properties, J. Alloys Compd., 2017, 708, p 1234–1244CrossRefGoogle Scholar
  18. 18.
    Y. Tzeng, C. Wu, C. Yang, and S. Lee, Effects of Trace Be and Sc Addition on the Thermal Stability of Al-7Si-0.6Mg Alloys, Mater. Sci. Eng., A, 2014, 614, p 54–61CrossRefGoogle Scholar
  19. 19.
    Y. Sui, Q. Wang, T. Liu, B. Ye, H. Jiang, and W. Ding, Influence of Gd Content on Microstructure and Mechanical Properties of Cast Al-12Si-4Cu-2Ni-0.8Mg Alloys, J. Alloys Compd., 2015, 644, p 228–235CrossRefGoogle Scholar
  20. 20.
    ISO 6892-1:2009, Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature, ISO, 2009.Google Scholar
  21. 21.
    L.R. Garcia, W.R. Osório, and A. Garcia, The Effect of Cooling Rate on the Dendritic Spacing and Morphology of Ag3Sn Intermetallic Particles of a SnAg Solder Alloy, Mater. Des., 2011, 32, p 3008–3012CrossRefGoogle Scholar
  22. 22.
    W.R. Osório, L.C. Peixoto, D.J. Moutinho, L.G. Gomes, I.L. Ferriera, and A. Garcia, Corrosion Resistance of Directionally Solidified Al-6Cu-1Si and Al-8Cu-3Si Alloys Castings, Mater. Des., 2011, 32, p 3832–3837CrossRefGoogle Scholar
  23. 23.
    L.A. Dobrzański, R. Maniara, and J.H. Sokolowski, The Effect of Cooling Rate on Microstructure and Mechanical Properties of AC AlSi9Cu Alloy, Arch. Mater. Sci. Eng., 2007, 28, p 105–112Google Scholar
  24. 24.
    H.M. Medrano-Prieto, C.G. Garay-Reyes, C.D. Gómez-Esparza, J. Aguilar-Santillán, M.C. Maldonado-Orozco, and R. Martínez-Sánchez, Evolution of Microstructure in Al-Si-Cu System Modified with a Transition Element Addition and Its Effect on Hardness, Mater. Res., 2016, 19, p 59–66CrossRefGoogle Scholar
  25. 25.
    M. Tash, F.H. Samuel, F. Mucciardi, and H.W. Doty, Effect of Metallurgical Parameters on the Hardness and Microstructural Characterization of As-cast and Heat-Treated 356 and 319 Aluminum Alloys, Mater. Sci. Eng., A, 2007, 443, p 185–201CrossRefGoogle Scholar
  26. 26.
    Z. Lai and D. Ye, Effect of Cooling Method and Aging Treatment on the Microstructure and Mechanical Properties of Sn-10Bi Solder Alloy, J. Mater. Sci.: Mater. Electron., 2016, 27, p 1–10Google Scholar
  27. 27.
    J.X. Jia, A. Atrens, G. Song, and T.H. Muster, Simulation of Galvanic Corrosion of Magnesium Coupled to a Steel Fastener in NaCl Solution, Mater. Corros., 2015, 56, p 468–474CrossRefGoogle Scholar
  28. 28.
    L. Han, Y. Sui, Q. Wang, K. Wang, and Y. Jiang, Effects of Nd on Microstructure and Mechanical Properties of Cast Al-Si-Cu-Ni-Mg Piston Alloys, J. Alloys Compd., 2017, 695, p 1566–1572CrossRefGoogle Scholar
  29. 29.
    H. Li, D. Huang, W. Kang, J. Liu, Y. Ou, and D. Li, Effect of Different Aging Processes on the Microstructure and Mechanical Properties of a Novel Al-Cu-Li Alloy, J. Mater. Sci. Technol., 2016, 32, p 1049–1053CrossRefGoogle Scholar
  30. 30.
    Y. Sun, S. Ma, H. Wang, L. Chen, K. Gao, Y. Ma, and B. Liu, Effects of Complex Modification by Sr-Sb on the Microstructures and Mechanical Properties of Al-18 wt.% Mg2Si-4.5Cu Alloys, Materials, 2016, 9, p 157–165CrossRefGoogle Scholar
  31. 31.
    K. Gao, S. Li, L. Xu, and H. Fu, Effect of Sample Size on Intemetallic Al2Cu Microstructure and Orientation Evolution During Directional Solidification, J. Cryst. Growth, 2014, 394, p 89–96CrossRefGoogle Scholar
  32. 32.
    H. Rudinato, S. Yang, K.W. Nam, and Y.J. Kim, Mechanical Properties of Al-14Si-2.5Cu-0.5 Mg Aluminum-Silicon P/M Alloy, Rev. Adv. Mater. Sci., 2011, 28, p 145–149Google Scholar
  33. 33.
    D.J. Chakrabarti and D.E. Laughlin, Phase Relations and Precipitation in Al-Mg-Si Alloys with Cu Additions, Prog. Mater Sci., 2004, 49, p 389–410CrossRefGoogle Scholar
  34. 34.
    A. Biswas, D.J. Siegel, and D.N. Seidman, Compositional Evolution of Q-Phase Precipitates in an Aluminum Alloy, Acta Mater., 2014, 75, p 322–336CrossRefGoogle Scholar
  35. 35.
    C.-Y. Jeong, High Temperature Mechanical Properties of Al-Si-Mg-(Cu) Alloys for Automotive Cylinder Heads, Mater. Trans., 2013, 54, p 588–594CrossRefGoogle Scholar
  36. 36.
    J.F. Nie and B.C. Muddle, Comments on the “Dislocation Interaction with Semicoherent Precipitates (Ω Phase) in Deformed Al-Cu-Mg-Ag Alloy”, Scr. Mater., 2000, 42, p 409–413CrossRefGoogle Scholar
  37. 37.
    G. Liu, G.J. Zhang, X.D. Ding, J. Sun, and K.H. Chen, Modeling the Strengthening Response to Aging Process of Heat-Treatable Aluminum Alloys Containing Plate/Disc- or Rod/Needle-Shaped Precipitates, Mater. Sci. Eng., A, 2003, 344, p 113–124CrossRefGoogle Scholar
  38. 38.
    C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 1961, 65, p 581–591Google Scholar
  39. 39.
    I.M. Lifshitz and S.V. Vitaly, The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 1961, 19, p 35–50CrossRefGoogle Scholar
  40. 40.
    S. Esmaeili, D. Lloyd, and W. Poole, A Yield Strength Model for the Al-Mg-Si-Cu Alloy AA6111, Acta Mater., 2003, 51, p 2243–2257CrossRefGoogle Scholar
  41. 41.
    J.E. Tibballs, J.A. Horst, and C.J. Simensen, Precipitation of α-Al(Fe, Mn)Si from the Melt, J. Mater. Sci., 2001, 36, p 937–941CrossRefGoogle Scholar
  42. 42.
    K.L. Fan, G.Q. He, X.S. Liu, M. She, Y.L. Yuan, Y. Yang, and Q. Lu, Tensile and Fatigue Properties of Gravity Casting Aluminum Alloys for Engine Cylinder Heads, Mater. Sci. Eng., A, 2013, 586, p 78–85CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.National Engineering Research Center of Light Alloys Net Forming and State Key Laboratory of Metal Matrix CompositeShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations