Advertisement

Microstructure and Mechanical Properties of Powder Thixoforged Amorphous Ni55Nb35Si10-Reinforced Al Matrix Composites

  • Z. Nouri
  • M. SedighiEmail author
Article
  • 9 Downloads

Abstract

Powder thixoforging was used to produce amorphous Ni55Nb35Si10-reinforced Al matrix composites from recycled Al powders obtained from ball-milled Al520 end-milled billets. The amorphous reinforcing material was uniformly dispersed in the Al matrix and bonded adequately with it without undesired interfacial reactions. The compressive yield strength of composites with 45% reinforcement content increased 248% to 794 MPa over as-cast samples. The maximum elongation and hardness of samples were 15%, and 60.4 HRA, respectively. The relative density of the unreinforced thixoforged sample was 99.8%, indicating near-perfect compaction of Al powders. The maximum elongation, hardness, and compressive yield strength of thixoforged monolithic matrix alloys were, respectively, 40%, 56.9 HRA, and 747 MPa (a 228% increase in CYS over the cast alloy). In contrast, cold-forged samples showed only 82% increase in compressive yield strength over the as-cast alloy. Powder thixoforging introduced in this study—even without reinforcement—delivers better mechanical properties compared to cold forging most likely due to the refinement and modification of the microstructure during powder ball milling.

Keywords

aluminum amorphous metallic alloy composites mechanical and microstructural properties metallic matrix powder thixoforming 

References

  1. 1.
    M.H. Lee, J.H. Kim, J.S. Park, J.C. Kim, W.T. Kim, and D.H. Kim, Fabrication of Ni-Nb-Ta Metallic Glass Reinforced Al-Based Alloy Matrix Composites by Infiltration Casting Process, Scr. Mater., 2004, 50(11), p 1367–1371CrossRefGoogle Scholar
  2. 2.
    Z. Wang, J. Tan, B.A. Sun, S. Scudino, K.G. Prashanth, W.W. Zhang, Y.Y. Li, and J. Eckert, Fabrication and Mechanical Properties of Al-Based Metal Matrix Composites Reinforced with Mg65Cu20Zn5Y10 Metallic Glass Particles, Mater. Sci. Eng. A, 2014, 600, p 53–58CrossRefGoogle Scholar
  3. 3.
    P. Yu, K.B. Kim, J. Das, F. Baier, W. Xu, and J. Eckert, Fabrication and Mechanical Properties of Ni-Nb Metallic Glass Particle-Reinforced Al-Based Metal Matrix Composite, Scr. Mater., 2006, 54(8), p 1445–1450CrossRefGoogle Scholar
  4. 4.
    P. Yu and J. Eckert, Effect of High Pressure during the Fabrication on the Thermal and Mechanical Properties of Amorphous Ni60Nb40 Particle-Reinforced Al-Based Metal Matrix Composites, J. Mater. Res., 2007, 22(05), p 1168–1173.  https://doi.org/10.1557/jmr.2007.0158 CrossRefGoogle Scholar
  5. 5.
    S. Jayalakshmi, S. Gupta, S. Sankaranarayanan, S. Sahu, and M. Gupta, Structural and Mechanical Properties of Ni60Nb40 Amorphous Alloy Particle Reinforced Al-Based Composites Produced by Microwave-Assisted Rapid Sintering, Mater. Sci. Eng. A, 2013, 581, p 119–127.  https://doi.org/10.1016/j.msea.2013.05.072 CrossRefGoogle Scholar
  6. 6.
    M.H. Lee, J. Kim, J.S. Park, W.T. Kim, and D.H. Kim, Development of Ni-Nb-Ta Metallic Glass Particle Reinforced Al Based Matrix Composites, Mater. Sci. Forum, 2005, 479, p 3427–3430CrossRefGoogle Scholar
  7. 7.
    H. Fujii, Y. Sun, K. Inada, Y. Ji, Y. Yokoyama, H. Kimura, and A. Inoue, Fabrication of Fe-Based Metallic Glass Particle Reinforced Al-Based Composite Materials by Friction Stir Processing, Mater. Trans., 2011, 52(8), p 1634–1640.  https://doi.org/10.2320/matertrans.M2011094 CrossRefGoogle Scholar
  8. 8.
    M.R. Rezaei, S.G. Shabestari, and S.H. Razavi, Effect of ECAP Consolidation Temperature on the Microstructure and Mechanical Properties of Al-Cu-Ti Metallic Glass Reinforced Aluminum Matrix Composite, J. Mater. Sci. Technol., 2017,  https://doi.org/10.1016/j.jmst.2016.10.013 CrossRefGoogle Scholar
  9. 9.
    K. Lichtenberg, E. Orsolani-uhlig, R. Roessler, and K. Andre, Influence of Heat Treatment on the Properties of AlSi10 Mg-Based Metal Matrix Composites Reinforced with Metallic Glass Flakes Processed by Gas Pressure Infiltration, Compos. Mater., 2017, 51(30), p 4165–4175CrossRefGoogle Scholar
  10. 10.
    M. Yuan, D.C. Zhang, C.G. Tan, Z.C. Luo, Y.F. Mao, and J.G. Lin, Microstructure and Properties of Al-Based Metal Matrix Composites Reinforced by Al60Cu20Ti15Zr5 Glassy Particles by High Pressure Hot Pressing Consolidation, Mater. Sci. Eng. A, 2014, 590, p 301–306.  https://doi.org/10.1016/j.msea.2013.10.049 CrossRefGoogle Scholar
  11. 11.
    S. Scudino, G. Liu, K.G. Prashanth, B. Bartusch, and K.B. Surreddi, Mechanical Properties of Al-Based Metal Matrix Composites Reinforced with Zr-Based Glassy Particles Produced by Powder Metallurgy, Acta Mater., 2009, 57(6), p 2029–2039.  https://doi.org/10.1016/j.actamat.2009.01.010 CrossRefGoogle Scholar
  12. 12.
    Z. Wang, S. Scudino, M. Stoica, W. Zhang, and J. Eckert, Al-Based Matrix Composites Reinforced with Short Fe-Based Metallic Glassy Fiber, J. Alloys Compd., 2015, 651, p 170–175.  https://doi.org/10.1016/j.jallcom.2015.08.098 CrossRefGoogle Scholar
  13. 13.
    R. Zheng, H. Yang, T. Liu, K. Ameyama, and C. Ma, Microstructure and Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Fe-Based Metallic Glass Particles, Mater. Des., 2014, 53, p 512–518.  https://doi.org/10.1016/j.matdes.2013.07.048 CrossRefGoogle Scholar
  14. 14.
    D.V. Dudina, K. Georgarakis, M. Aljerf, Y. Li, M. Braccini, A.R. Yavari, and A. Inoue, Cu-Based Metallic Glass Particle Additions to Significantly Improve Overall Compressive Properties of an Al Alloy, Compos. Part A Appl. Sci. Manuf., 2010, 41(10), p 1551–1557CrossRefGoogle Scholar
  15. 15.
    M. Aljerf, K. Georgarakis, D. Louzguine-luzgin, A. Le Moulec, A. Inoue, and A.R. Yavari, Strong and Light Metal Matrix Composites with Metallic Glass Particulate Reinforcement, Mater. Sci. Eng. A, 2012, 532, p 325–330.  https://doi.org/10.1016/j.msea.2011.10.098 CrossRefGoogle Scholar
  16. 16.
    L. Zhang, L. Yang, J. Leng, T. Wang, and Y. Wang, Alloying Behavior and Properties of Al-Based Composites Reinforced with Al85Fe15 Metallic Glass Particles Fabricated by Mechanical Alloying and Hot Pressing Consolidation, JOM, 2017, 69(4), p 748–755.  https://doi.org/10.1007/s11837-016-2239-9 CrossRefGoogle Scholar
  17. 17.
    Z. Wang, K. Georgarakis, K.S. Nakayama, Y. Li, A.A. Tsarkov, G. Xie, D. Dudina, D.V. Louzguine-Luzgin, and A.R. Yavari, Microstructure and Mechanical Behavior of Metallic Glass Fiber-Reinforced Al Alloy Matrix Composites, Sci. Rep., 2016, 6(April), p 24384.  https://doi.org/10.1038/srep24384 CrossRefGoogle Scholar
  18. 18.
    M. Lee, D. Bae, W. Kim, and D. Kim, Ni-Based Refractory Bulk Amorphous Alloys with High Thermal Stability, Mater. Trans., 2003, 44(10), p 2084–2087CrossRefGoogle Scholar
  19. 19.
    H. Minouei, G.H. Akbari, M.H. Enayati, and S.I. Hong, Amorphization and Nanocrystallization of Ni-Nb-Si Alloys, Mater. Sci. Eng. A, 2017, November 2016(682), p 396–401CrossRefGoogle Scholar
  20. 20.
    A. Javdani, V. Pouyafar, A. Ameli, and A.A. Volinsky, Blended Powder Semisolid Forming of Al7075/Al2O3 Composites: Investigation of Microstructure and Mechanical Properties, Mater. Des., 2016, 109, p 57–67CrossRefGoogle Scholar
  21. 21.
    Y. Wu, G.-Y. Kim, I.E. Anderson, and T.A. Lograsso, Experimental Study on Viscosity and Phase Segregation of Al-Si Powders in Microsemisolid Powder Forming, J. Manuf. Sci. Eng., 2010, 132(1), p 011003CrossRefGoogle Scholar
  22. 22.
    M.M. Rovira, B.C. Lancini, and M.H. Robert, Thixo-Forming of Al-Cu Alloys, J. Mater. Process. Technol., 1999, 92–93, p 42–49CrossRefGoogle Scholar
  23. 23.
    M. Flemings, Behavior of Metal Alloys in the Semisolid State, Metall. Trans. B, 1991, 22, p 269–293CrossRefGoogle Scholar
  24. 24.
    C.G. Kang, S.W. Youn, and S.M. Park, Effect of Applied Pressure and Heat Treatment Condition on Microstructural Characteristics and Mechanical Properties of the Thixoforged 357 Aluminum Alloy, J. Mater. Eng. Perform., 2004, 13(1), p 55–59.  https://doi.org/10.1361/10599490417632 CrossRefGoogle Scholar
  25. 25.
    K.S. Yoon, S.M. Lee, and C.G. Kang, Two-Phase Flow Characteristics in Hollow Shape Fabrication Process of Metal Matrix Composites by Thixoforging, J. Mater. Eng. Perform., 2008, 17(3), p 432–444CrossRefGoogle Scholar
  26. 26.
    L. Zu and S. Luo, Study on the Powder Mixing and Semi-Solid Extrusion Forming Process of SiCp/2024Al Composites, J. Mater. Process. Technol., 2001, 114, p 189–193CrossRefGoogle Scholar
  27. 27.
    Y. Wu, “Fabrication of Metal Matrix Composite by Semi-Solid Powder Processing,” Iowa State University, 2011. http://lib.dr.iastate.edu/etd/10428/.
  28. 28.
    C.M. Chen, C.C. Yang, and C.G. Chao, A Novel Method for Net-Shape Forming of Hypereutectic Al-Si Alloys by Thixocasting with Powder Preforms, J. Mater. Process. Technol., 2005, 167, p 103–109CrossRefGoogle Scholar
  29. 29.
    Y. Liu, X. Luo, and Z. Li, Microstructure Evolution during Semi-Solid Powder Rolling and Post-Treatment of 7050 Aluminum Alloy Strips, J. Mater. Process. Technol., 2014, 214(2), p 165–174.  https://doi.org/10.1016/j.jmatprotec.2013.08.018 CrossRefGoogle Scholar
  30. 30.
    P.B. Li, T.J. Chen, and H. Qin, Effects of Reheating Temperature on the Microstructure and Tensile Properties of SiCp/2024 Al-Composites Prepared by Powder Thixoforming, Powder Metall., 2016, 59(4), p 288–300CrossRefGoogle Scholar
  31. 31.
    Y. Chen, T. Chen, S. Zhang, and P.L. Li, Effect of Processing Parameters on Microstructure and Mechanical Properties of Powder-Thixoforged 6061 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25(3), p 699–712CrossRefGoogle Scholar
  32. 32.
    G. Kim, I.E. Anderson, and T.A. Lograsso, Experimental Study on Viscosity and Phase Segregation of Al-Si Powders in Microsemisolid, J. Manuf. Sci. Eng., 2015, 132(February 2010), p 29–32Google Scholar
  33. 33.
    X.Z. Zhang, T.J. Chen, Y.S. Chen, Y.J. Wang, and H. Qin, Effects of Solution Treatment on Microstructure and Mechanical Properties of Powder Thixoforming 6061 Aluminum Alloy, Mater. Sci. Eng. A, 2016, 662, p 214–226CrossRefGoogle Scholar
  34. 34.
    L.M.P. Ferreira, M.H. Robert, and E. Bayraktar, Production of Aluminum/SiC/NiAl2O4 MMCs by Thixoforming of Recycled Chips, Solid State Phenom., 2015, 217–218, p 286–293.  https://doi.org/10.4028/www.scientific.net/SSP.217-218.286 CrossRefGoogle Scholar
  35. 35.
    L.M.P. Ferreira, M.H. Robert, B. Emin, and D. Zaimova, New Design of Aluminum Based Composites Though Combined Method of Powder Metallurgy and Thixoforming, Adv. Mater. Res., 2014, 939, p 68–75CrossRefGoogle Scholar
  36. 36.
    X.Z. Zhang, T.J. Chen, and Y.H. Qin, Effects of Solution Treatment on Tensile Properties and Strengthening Mechanisms of SiCp/6061 Al Composites Fabricated by Powder Thixoforming, Mater. Des., 2016, 99, p 182–192.  https://doi.org/10.1016/j.matdes.2016.03.068 CrossRefGoogle Scholar
  37. 37.
    I. Ozdemir, S. Muecklich, H. Podlesak, and B. Wielage, Thixoforming of AA 2017 Aluminum Alloy Composites, J. Mater. Process. Technol., 2011, 211(7), p 1260–1267.  https://doi.org/10.1016/j.jmatprotec.2011.02.008 CrossRefGoogle Scholar
  38. 38.
    R.W. Hamilton, Z. Zhu, R.J. Dashwood, and P.D. Lee, Direct Semi-Solid Forming of a Powder SiC-A1 PMMC: Flow Analysis, Compos. Part A Appl. Sci. Manuf., 2003, 34(4), p 333–339CrossRefGoogle Scholar
  39. 39.
    P. Li, T. Chen, and H. Qin, Effects of Pressure on Microstructure and Mechanical Properties of SiCp/2024 Al-Based Composites Fabricated by Powder Thixoforming, J. Mater. Sci., 2017, 52(4), p 2045–2059CrossRefGoogle Scholar
  40. 40.
    A. Canakci and T. Varol, A Novel Method for the Production of Metal Powders without Conventional Atomization Process, J. Clean. Prod., 2015, 99, p 312–319.  https://doi.org/10.1016/j.jclepro.2015.02.090 CrossRefGoogle Scholar
  41. 41.
    Y.W. Kim, W.M. Griffith, and F.H. Froes, Surface Oxides in P/M Aluminum Alloy, JOM, 1985, 37(8), p 27–33CrossRefGoogle Scholar
  42. 42.
    J. Gronostajski and A. Matuszak, The Recycling of Metals by Plastic Deformation: An Example of Recycling of Aluminium and Its Alloys Chips, J. Mater. Process. Technol., 1999, 92, p 35–41CrossRefGoogle Scholar
  43. 43.
    P. Yu, L.C. Zhang, W.Y. Zhang, J. Das, K.B. Kim, and J. Eckert, Interfacial Reaction during the Fabrication of Ni60Nb40 Metallic Glass Particles-Reinforced Al Based MMCs, Mater. Sci. Eng. A, 2007, 444(1–2), p 206–213CrossRefGoogle Scholar
  44. 44.
    R. Daly, M. Khitouni, A.W. Kolsi, and N. Njah, The Studies of Crystallite Size and Microstrains in Aluminum Powder Prepared by Mechanical Milling, Phys. Status Solidi C, 2006, 3331(9), p 3325–3331CrossRefGoogle Scholar
  45. 45.
    F. Breu, S. Guggenbichler, and J. Wollmann, “Mechanical Testing and Evaluation ASM Metals Handbook Volume 8,” ASM International, 2000. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf.
  46. 46.
    J. David Raja Selvam, D.S. Robinson Smart, and I. Dinaharan, Microstructure and Some Mechanical Properties of Fly Ash Particulate Reinforced AA6061 Aluminum Alloy Composites Prepared by Compocasting, Mater. Des., 2013, 49, p 28–34.  https://doi.org/10.1016/j.matdes.2013.01.053 CrossRefGoogle Scholar
  47. 47.
    S.N. Aqida, M.I. Ghazali, and J. Hashim, Effects of Porosity on Mechanical Properties of Metal Matrix Composite: An Overview, J. Teknol., 2004, 40, p 17–32Google Scholar
  48. 48.
    N. Chawla, J.J. Williams, and R. Saha, Mechanical Behavior and Microstructure Characterization of Sinter-Forged SiC Particle Reinforced Aluminum Matrix Composites, J. Light Met., 2002, 2(4), p 215–227CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations